- 締切済み
不定積分の問題
(1)∫dx/{(2x+1)√(1-x^2)} (2)∫√(x^2+2x+2)dx/x という問題です。解答と自分の答えが合わず、どこがまちがっているのか分かりません。指摘していただけないでしょうか。よろしくお願いします。 (1)t=√{(1+x)/(1-x)}とおく。 dt=1/(1-x)^2*√{(1-x)/(1+x)}dx 与式=∫1/{(2x+1)√(1-x^2)}*(1-x)^2√{(1+x)/(1-x)}dt =∫(1-x)/(2x+1)dt =2/3∫1/(t^2-1)dt ここからどうしたらいいのか分からなくなってしまいました。 また、解答は1/√3*log{(x+1/2)/(x+2+√(3-3x^2))}となっているのですがどうしてこうなるのかさっぱりです。 (2)t=√(x^2+2x+2)+xとおく。 dt={(x+1)/√(x^2+2x+2)+1}dx =(t+1)/√(x^2+2x+2)dx 与式=∫(x^2+2x+2)/x(t+1)dt ここから分かりません。 解答はarcsinh(x+1)+√2log{x/(x+2+√(2x^2+4x+4))+√(x^2+2x+2)}となっています。 解答までの導き方も合わせて教えていただけると助かります。 略解しかなく、本当に困っています。 どうかよろしくお願いします。
- みんなの回答 (1)
- 専門家の回答
みんなの回答
- info22_
- ベストアンサー率67% (2650/3922)
回答No.1