- 締切済み
位相幾何学の問題です。
平面図形Xにおいて、 Xの任意の2点pとqに対して、 X内の折れ線でpとqを結ぶものが存在する とき、Xが弧状連結であるという。 X={(x,y)|1≦lxl≦2,lyl≦2}∪{(x,y)|lxl≦2,1≦lyl≦2} とする。Xが弧状連結であることを示せ。
- みんなの回答 (3)
- 専門家の回答
平面図形Xにおいて、 Xの任意の2点pとqに対して、 X内の折れ線でpとqを結ぶものが存在する とき、Xが弧状連結であるという。 X={(x,y)|1≦lxl≦2,lyl≦2}∪{(x,y)|lxl≦2,1≦lyl≦2} とする。Xが弧状連結であることを示せ。