- 締切済み
高校 数学の問題です【漸化式と数学的帰納法】
α1=1、αn+1=αn+nー1(n=1,2,3、・・・)によって定義される数列{αn}の一般項を求めよ α1=1、αn+1=2αn+3(n≧1)で定義される数列{αn}の一般項を求めよ ぜんぜんわからないので、誰か解き方と解答を教えてください(><)
- みんなの回答 (1)
- 専門家の回答
みんなの回答
- さゆみ(@sayumi0570)
- ベストアンサー率27% (104/381)
回答No.1
初項1で 項差はn-1なので An=1+Σ(K=1→n-1)K-1 =1/2(n^2-3n+4) A(n+1)=2A(n)+3 A(n+1)+3=2(A(n)+3) A(n)=4・2^(n-1)-3