ベストアンサー 数III 面積 2011/03/06 00:05 数IIIの問題です。 よろしくお願いします。 曲線y=e^xと、この曲線上の点(1,e)における接線およびy軸によって囲まれた図形の面積を求めよ。 みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー gohtraw ベストアンサー率54% (1630/2965) 2011/03/06 00:47 回答No.1 この曲線の(1,e)における傾きはeになります(dy/dx=e^x なので)。従って接線の式はy=ex です。 このことから求める面積は ∫(e^x-ex)dx (積分範囲はx=0から1) となります。 質問者 お礼 2011/03/06 01:11 ありがとうございます(^^)/ 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 積分の面積問題について aを0でない実数とし、f(x)=(x-a)e^(-x)とおく。曲線f(x)が原点を通る接線をただ一つもつとき、 1、aの値を求めよ。 2、曲線y=f(x)の変曲点のx座標を求めよ。 3、曲線y=f(x)と、この曲線の原点を通る接線およびy軸で囲まれた部分の面積を求めよ。 解答;a=-4, 変曲点のx座標x=-2 3、接線のx座標は(-2、2e^2) この点は2、より変曲点であるからグラフは~ と書いていてグラフはf(x)と接線がx=-2のみで接して交点はこれのみです。なぜこうなるのかがわかりません。 これは「変曲点で接線が接した場合は曲線の接線の交点は接点のみ」ということでしょうか? よろしくお願いします。 定積分 面積 次の図形の面積を求めよ。 (1)曲線y=x^3-3x+5と、yが極大になる点におけるその曲線の接線で囲まれた図形。 この問題なんですが、yの式を微分して増減表とかを書いて、 図も描いて、求めればいいでしょうか?そうなると書く量が多くなるので、もし、もっと簡潔に解ける方法があればおしえてください。 面積について ・曲線 y=x^3+x^2-2xと、その曲線上の点(1,0)における接線で囲まれた部分の面積を求めよ。 ・画像の問題 がどうしてもわからないので教えていただけると助かりますおねがいします 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 積分です 積分の問題です。 この曲線で囲まれた図形の面積を求めよ 0≦x≦πのときy=sinx y=cos2x -1/4≦y≦1のときx^2+y^2=1 y=x^2-1/4 積分の仕方は分かりました。xとyに対応する範囲が分かりません。 曲線y=e^xと原点からこの曲線にひた接線およびy軸で囲まれた図形の面積をもめよ これは意味が分かりません。 まったく解けないです(泣) この3問を四時間ぐらいやっているのです・・・・ 教えてくれませんか?? お願いします。 数学IIIの問題 定積分の応用問題で面積を求められません。助けてください。解説もお願いします (1) 2曲線y=sinx, y=cosx (-3Π/4≦x≦Π/4)で囲まれた図形の面積S (2) 曲線2x+(1/x)-3とx軸で囲まれた部分の面積S (3) 曲線y=x√x の0≦x≦1の部分の長さL (4) 曲線y=2/(2+x) とx軸、y軸および直線x=2とで囲まれた図形を、x軸の周りに1回転してできる立体の体積V (5) 半径r{x=rcost, y=rsint の円(0≦t≦2Π)の周りの長さL 1997年度九州大学プレテストより 問題 関数 y=xe^(-x) の曲線に3本の接線が引ける点のうち,x座標が正の点の存在する領域の面積を求めなさい。 に対して,答え(解説)は x軸,y軸,曲線 y=xe^(-x) ,変曲点(今回の場合は(2,2e^(-2) )になります。)における接線で囲まれた部分の面積を求めればよい。 となっているのですが,なぜこうなるのかがわかりません。ご教示願えれば幸いです。よろしくお願い致します。 数IIIの問題(定積分・面積) C:y=x^2+2の下側にある点PからCに引いた2本の接線とCとで囲まれる図形の面積をSとする。 (1) 2つの接点をQ,Rとし、この2点のx座標をそれぞれα,β(α<β)とおく。Sをαとβを用いて表せ。 (2) 点Pが、直線y=x上を動くとき、Sの最小値を求めよ。 この問題の答えと説き方を教えてください。 お願いします。 この問題が解ける人はといてくれませんか 曲線y=logx(x>0)上の点P(a,loga) (a>1)での接線をLとし、Pからx軸へおろした垂線の足をHとする。さらに、接線Lとx軸、およびy=logxで囲まれた図形の面積をS1、曲線とx軸、および線分PHで囲まれた図形の面積をS2とする。 (1)S1、S2を求めよ。 (2)aー>∞のときのS1/S2・PHの極限を求めよ。 数学III 0≦x≦π/2とする。2曲線C:1 y=sin2xとC:2 y=a-2cosxが接する時、次の問いに答えよ。ただし、2曲線C:1とC:2が共有点における2曲線の接線が一致することである。 (1)定数aの値を求めよ。 (2)(1)で求めたaに対して、曲線C:1、C:2およびy軸で囲まれる部分の面積を求めよ。 宜しくお願いします!m(_ _)m 定積分の応用 次の図形の面積を求めよ。 (1)曲線y=x^3-5xと、点(1、-4)におけるその曲線の接線でかこまれた図形。 (2)放物線2y=x^2+a^2(a>0)と、原点からこれに引いた2本の接線で囲まれた図形。 (1)(2)ともに、接線の方程式を出したいのですが、接線の方程式の求め方がわかりません。おねがいします。 積分法(面積)についての問題 2^3=2の3乗という意味です 次の曲線や直線で囲まれた図形の面積を求めなさい。 y=x(x^2-1),x軸 という問題でした。 この問題の解き方から詳しく教えていただけるとうれしいです。 切羽詰っているのでよろしくお願いいたします。 定積分 曲線や直線で囲まれた図形の面積 次の曲線や直線で囲まれた図形の面積を求めよ。 √x+√y=1、x軸、y軸 この問題なんですが、√y=1-√x として、両辺を2乗してから、やっていけばいいのですか? 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 面積です・・ 「曲線y=x^3-5x+3と曲線上の点(t,t^3-5t+3)における接線とで囲まれる部分の面積が27/4のときtの値をもとめよ。」という問題の解説で「|∫(x-t)^2(x+2t)dx (定積分の区間は下端-2t,上端t)|=∫(x-t)^2(x+2t)dx (定積分の区間は下端-2t,上端t)である。」とあったのですが・・t<-2tのときも-2t<tとまとめてかんがえてもいいのですか?それはなぜでしょうか?それに、接線の方程式y=(3t^2-5)x-2t^3+3を曲線y=x^3-5x+3からひいたり、接線の方程式y=(3t^2-5)x-2t^3+3から曲線y=x^3-5x+3をひいたりとやってめんせきをだすのでは・・? 教えてください!!お願いします!! 数IIIの積分について教えてください C: y=x3-2x-3上の点(-1、-2)における接線をLとする。 〔1〕CとLの交点で点(-1、-2)以外のものを求めよ。 〔2〕CとLとで囲まれる図形の面積を求めよ。 この問題の解き方わかりません。できるだけ詳しく教えてもらいたいです。 できたらどんな図形なのかも教えてください。 早急に回答お願いします 積分による曲・直線の面積の求める問題 (1)曲線√x+√y=1 と 直線x+y=1 で囲まれた図形 (2)楕円2x^2+6y^2=3の内部 の面積を求めたいのです(積分で) (1)では、曲線の式がどのような形になるのかが想像できず、図に表せないでいるために、どのような図形の面積を求めればいいのかわかりません。 (2)では楕円の形、つまりx軸y軸の範囲が分からないでいます。 すみませんが、どなたか力を貸していただけませんか? 面積計算 xy平面上の曲線C:y=sinx(0≦x≦π/2)上の点(θ、sinθ)における接線l、法線をmとする。ただし、0<x<π/2をみたすものとする。 Cとlおよびx軸とで囲まれる図形の面積をS1とし、Cとmおよびx軸とで囲まれる図形の面積をS2とする。S2-S1の取りえる値の範囲を求めよ。 計算したら、 S1:-(cosθ-1)^2/2cosθ S2:θsinθ-θ^2/2cosθ S2-S1θ=(2sinθcosθ-θ^2cos^2θ+cos^2θ-2cosθ+1)/2cosθ というきたない感じになってしまったんですが、計算間違いでしょうか。もし、合ってるならこのあと、どう計算したらいいのでしょうか…。 積分 面積 ちょっと急いでいます。 どうかよろしくお願いします。 (1)、曲線y=x(x-2)^2とx軸で囲まれた図形。 (2)、曲線x=y^2-1と直線x-y-1=0で囲まれた図形。 (3)、曲線y=xlogxとx軸および直線x=2で囲まれた図形。 解説というか計算の流れもぜひお願いします。 曲線とx軸の間の面積 曲線y=x(x-1)(x-2)とx軸とで囲まれた図形の面積を求めよ。 よろしくお願いします! 微積 体積と面積 直線y=8-xと曲線y=x^2とy軸が囲まれる図形の面積、この図形をx軸の周りに回転したときの回転体の体積を求めよ。 勝手ですが火曜日の夜までに回答をください、お願いします。 媒介変数表示による曲線の面積 数IIIの問題で、曲線C:x=cos2θ+3,y=cos2θ+2cosθ-3 (0≦θ≦π)の(x,y)の増減を調べて、概形を描き、曲線Cとx=4で囲まれる図形の面積を求めよ。と言う問題があります。図を描くところまでは出来たのですが、僕の書いた図は、x=4では囲まれないような図形です。描いた図形はxの範囲は2~4でyの範囲は-4~-(9/2)でx=5/2の時に最小値を取るような図形です。僕の間違いを指摘するのはこれだけの情報では難しいと思うので、可能なら、どこが間違ってるのか、あと解法のヒントを教えてください。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ありがとうございます(^^)/