高校数学の四面体の体積の問題です 3-19別解
四角錐V-ABCDがあって、その底面ABCDは正方形であり、また4辺VA,VB,VC,VDの長さはすべて相等しい
この四角錐の頂点Vから底面に下ろした垂線VHの長さは6であり、底面の一辺の長さは4√3である
VH上にVK=4なる点Kをとり、点Kと底面の一辺ABとを含む平面でこの四角錐を2つの部分に分けるとき、頂点Vを含む部分の体積を求めよ
図1http://imgur.com/5xQss8F
図2http://imgur.com/IFmVCkj
解説は図1において2つの四面体XYZUとXY'Z'U'の体積の比は1:abcである 題意の四角錐を四面体に分割してこのことを使うと 平面VACで四角錐を切るとき、図2のようにKは切り口の三角形の中線を2:1に内分するからVP:PC=1:1である、すると明らかにVQ:QD=1:1 するとV-ABPQ=V-APQ+V-ABP
=1/2×1/2×V-ACD+1/2×V-ABC=1/4×1/2×V-ABCD+1/2×1/2×V-ABCD=3/8{1/3×(4√3)^2×6}=36
とあるのですが、最初の図1で2つの四面体XYZUとXY'Z'U'の体積の比は1:abcであるとあるのですが、四面体の体積は1/3×底面積×高さですよね、何でこの2つの四面体の体積の比が1:abcとわかるのですか?底面積も高さも出していませんよね?
後はV-APQ=1/2×1/2×V-ACD V-ABP=1/2×V-ABCとなるのが理解できないです、多分最初の例で示した2つの四面体XYZUとXY'Z'U'の体積の比は1:abcの所が理解できれば分かるかと思うのですが
お礼
ありがとうございます