- ベストアンサー
積分の問題です
1.Dを原点の中心、半径εの円板として、線積分∫∂D{(-ydx+xdy)/(x^2+y^2)}を計算してください。 2.x-y平面内の領域Dは境界∂Dの上に原点がないとする。このとき ∫∂D{(-ydx+xdy)/(x^2+y^2)}=0 (原点がDの外部にある) =2π(原点がDの内部にある) を証明してください。
- みんなの回答 (1)
- 専門家の回答
1.Dを原点の中心、半径εの円板として、線積分∫∂D{(-ydx+xdy)/(x^2+y^2)}を計算してください。 2.x-y平面内の領域Dは境界∂Dの上に原点がないとする。このとき ∫∂D{(-ydx+xdy)/(x^2+y^2)}=0 (原点がDの外部にある) =2π(原点がDの内部にある) を証明してください。
補足
参考書にあたってみたのですが、わかりませんでした・・・