- 締切済み
積分について
∫t・f(t-x)dtというものがあったとします。 このとき、f(t-x)は扱いにくいのでu=t-xとおくと ∫t・f(t-x)dt=∫(u+x)・f(u)duとなります。(積分区間は省略します。) そして∫(u+x)・f(u)du=∫(t+x)・f(t)dtという変形をよく見ますが、この変形はなぜ可能なのでしょうか? 途中までは理解できますが、最後にuをそのままtに変えています。 u=t-xとおいているのに、なぜ勝手にuをtに変えてよいのでしょうか? この手法は、積分関数で、両辺をxで微分する際によく使われるものです。
- みんなの回答 (2)
- 専門家の回答