- 締切済み
積分可能条件について
積分して得られる関数が一価である為の条件が積分可能条件であると言うのは正しいのでしょうか? 例えば簡単には以下の状況を想定しています。 df(x,y,z)= u dx + v dy + w dz fが積分して得られる関数、u,v,wが被積分関数とここでは書いています。 具体的には弾性体力学のひずみ(被積分関数)-変位(積分して得られる関数)の関係において出てくる適合条件は三変数における積分可能条件に相当しますが、この条件はひずみを積分して計算した変位が一価である為の条件であると書いてある本がありました。 他にも以下のようなことが疑問です。。。 1.積分して得られる関数が多価関数ならば積分可能条件を満たされないといえるか? 2.積分して得られる関数fが三変数(x1,x2,x3)以上の場合、∂^2 f/∂x_i∂x_j -∂^2 f/∂x_j∂x_i=0 (i=1,2,3, j=1,2,3)の一回微分を非積分関数で置き換えたものは積分可能条件として十分か? また、この話が何らかの形で不連続性と関係がありましたら、その関係についても教えていただけると幸いです。 表現が下手くそですみませんが、よろしくお願いいたします。
- みんなの回答 (4)
- 専門家の回答
みんなの回答
- niwa0617
- ベストアンサー率0% (0/0)
回答No.4
- grothendieck
- ベストアンサー率62% (328/524)
回答No.3
- grothendieck
- ベストアンサー率62% (328/524)
回答No.2
- grothendieck
- ベストアンサー率62% (328/524)
回答No.1
お礼
なるほど。そのように言えるのは直感的にわかる気がします。 もともとこの質問をさせていただいたのは、 転位などで生じる変位の特異性で適合条件が成り立たず新しい項が出てくる状況と、 電磁場を生む非可積分位相とのアナロジーを考えていたからでした。つまり、転位の力学をゲージ理論として考えられないかと思ったわけです。 ゲージ理論でいうところの磁場または重力(曲率テンソル)が0というのと、転位がない(適合条件を満たす)ことが対応していると考えれば、niwa0617さんの仰っていることはすっきり通ります。 ほとんどそのものですね。 その後調べてみると、転位の話はベリー位相の一種としてベリーはすでに例に出していたみたいですし、あまり市民権は得られていないみたいですが転位のゲージ理論的な定式化もすでに考えられているみたいです。 最後に、面白そうな本の紹介ありがとうございます。