- ベストアンサー
電磁気 球座標
電磁気の問題で、「半径Rの球面上に一様に分布した電荷による静電ポテンシャルを求めよ。」で積分の範囲についてわかりません。この問題はまず、球の極座標を考えます。 V={1/(4πε0)}∫(0→2π)∫(0→π){(σr^2 sinθ dθ dφ)/(√[R^2 +r^2 +2Rrcosθ])} を計算するのですが、 なぜ、積分範囲が、なぜdθとdφがこうなるのでしょうか。またなぜ違うのでしょうか。
- みんなの回答 (1)
- 専門家の回答
電磁気の問題で、「半径Rの球面上に一様に分布した電荷による静電ポテンシャルを求めよ。」で積分の範囲についてわかりません。この問題はまず、球の極座標を考えます。 V={1/(4πε0)}∫(0→2π)∫(0→π){(σr^2 sinθ dθ dφ)/(√[R^2 +r^2 +2Rrcosθ])} を計算するのですが、 なぜ、積分範囲が、なぜdθとdφがこうなるのでしょうか。またなぜ違うのでしょうか。