∫x^2√(4-x^2)dxの積分
∫x^2√(4-x^2)dxの積分についてです。
以下のように解いて見たんですが,
∫x^2√(4-x^2)dx
=1/3x^3√(4-x^2)-1/3∫x^3√(4-x^2)dx
=1/3{x^3√(4-x^2)-∫[-2x/2√(4-x^2)]x^3dx}
=1/3{x^3√(4-x^2)-∫[-x^4/√(4-x^2)]3dx}
=1/3{x^3√(4-x^2)-∫[16-x^4/√(4-x^2)]dx+[16/√(4-x^2)]dx}
=1/3{x^3√(4-x^2)-∫(4+x^2)√(4-x^2)dx+16sin^-1x/2}
右辺の∫x^2√(4-x^2)dxを左辺に移動させると
4/3∫x^2√(4-x^2)dx=1/3{x^3√(4-x^2)-∫(4√(4-x^2)dx+16sin^-1x/2}
両辺を3倍して
4∫x^2√(4-x^2)dx=x^3√(4-x^2)-∫(4√(4-x^2)dx+16sin^-1x/2
よって
∫x^2√(4-x^2)dx=1/4{x^3√(4-x^2)-∫(4√(4-x^2)dx+16sin^-1x/2}
となりました。途中式・解答はあってますか?よろしくお願いします。
お礼
不定積分も求められるのですね。 なるほど。 ありがとうございます。