ベストアンサー 裏技数学、不定積分∫e^(3x) sin 2x dx 2007/03/27 14:34 ある本に、不定積分 ∫e^(3x) sin 2x dx が30秒で解けると書いてありました。 普通の解法と、裏技の解法を教えていただきたいです。 みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー info22 ベストアンサー率55% (2225/4034) 2007/03/27 15:14 回答No.1 I=∫e^(3x) sin 2x dx =(e^(3x)/3)sin 2x -(2/3)J J=∫e^(3x) cos 2x dx =(e^(3x)/3)cos 2x +(2/3)I I=(e^(3x)/3)sin 2x -(2/3){(e^(3x)/3)cos 2x +(2/3)I} {1+(4/9)}I=(1/3)e^(3x)sin 2x-(2/9)e^(3x)cos 2x I=(1/13)e^(3x)(3sin 2x-2cos 2x)+C 多分裏技解法は厳密性は別にして sin2x=Im(e^(2xi)である事を利用して K=∫e^(3x+2xi) dx=∫e^(x(3+2i)) dx=e(x(3+2i))/(3+2i) I=Im(K)=Im{e(x(3+2i))/(3+2i)}=e^(3x)Im{e^(2xi)/(3+2i)} =(1/13)e^(3x)Im{e^(2xi)(3-2i)} I=(1/13)e^(3x){3sin(2x)-2cos(2x)}+C 同じ結果がでます。Cは積分定数です。 質問者 お礼 2007/03/27 15:45 ご丁寧にありがとうございました。 複素関数の積分でも、正則であれば、不定積分の概念はあると思います。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (1) tarame ベストアンサー率33% (67/198) 2007/03/27 15:16 回答No.2 「普通?」の解法は、部分積分法ですよね。 A=∫e^(3x)sin(2x)dx とおいて A=[?]-[?]A という形にもっていきます。 「裏技」? A=e^(3x)sin(2x),B=e^(3x)cos(2x) とおいて AとBを微分します。 質問者 お礼 2007/03/27 15:46 ご丁寧にありがとうございます。 AとBの線形結合の、係数を見つけるのですね。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 裏技数学、不定積分∫x^2 sin x dx ある本に、不定積分 ∫x^2 sin x dx が40秒で解けると書いてありました。 普通の解法は部分積分を2回用いる方法だと思います。 裏技の解法を教えていただきたいです。 (1)∫sin^2dxの不定積分を求めよ (1)∫sin^2dxの不定積分を求めよ (2)x=sintと置換して∫√1-x^2dxの不定積分を求めよ (3)4x(1-x)=1-(2x-1)^2を利用して、 ∫dx/√x(1-x)=∫2dx/√4x-4x^2の不定積分をを求めよ ∫(x/3+8)^3dxの不定積分を求めたいんですが、解き方がわかりま ∫(x/3+8)^3dxの不定積分を求めたいんですが、解き方がわかりません。教えて下さい。因みに答えは3/4((x/3)+8)^4です 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 不定積分∫(x^2+1)^(-4)dxの解き方 不定積分∫(x^2+1)^(-4)dxの解き方がわかりません。 教えてください! 計算過程も書いていただけると嬉しいです・・・。 不定積分∫f(x)dxのdx 不定積分∫f(x)dxのdxとはなんですか? 不定積分と広義積分 不定積分、広義積分を求める問題です。 (1) ∫x^2/(x^4+1)dx (2) ∫(x^2-1)^(3/2)dx (3) ∫(-∞から∞まで)1/(x^6+1)dx 三角関数で置換してやってみたりしましたが、どうも上手くいかないみたいで。何か良い解法があれば教えてください。 ∫(1/(4-3x))dxの積分 ∫(1/(4-3x))dxの積分ができません。 ∫(4-3x)^(-1)dxに表してみても積分できないです。 どなたか、解法を教えて下さい。 不定積分と定積分 この問題教えてください。 不定積分と定積分を求めよ。(2)は上端に3下端に1です (1)∫(4x+3)^6dx (2)∫(3) √2x+3dx (1) (3)∫1/(5-2x)dx (4)∫(2) x{(x/2)-1}^7dx (6) (5)∫e^(-5x) dx 不定積分の解き方が分からない‼ 不定積分の解き方が分からず躓いてます‼手間をおかけしますが、途中式も加えて教えてほしいです。よろしくお願いします‼ ①∫x√2x-1dx ②∫x/√x+1dx ③∫x^2√x^3+2dx ④∫sin^3xcosxdx 不定積分が分かりません。 以下の不定積分の解き方が分かりません。分かる問題だけでも良いのでご教授願います。 1. ∫√(x-1)/√(x+1)dx 2. ∫(e^2x/(e^x+1))dx 3. ∫(12/(x^3-8))dx よろしくお願いします。 教えてください。不定積分 ∫(e^x /x^3)dx 教科書で問題を解いてるときに ∫(e^x /x^5)dx という積分が出てきました。1日考えてみて置換積分を試したりしてもも糸口すら見つかりません。 出来るなら解答までの計算式も含めて、どうかよろしくお願いします。 一応ですが、元の問題は (x^2)y''-5xy'+8y=e^x です。 もしこの積分が必要ない時には問題の1歩目から間違ってる事になるのでご指摘お願いします。 不定積分∫√[x(x+1)] dx の問題についておしえてください。 教えていただきたいのは以下の問題です。 ∫√[x(x+1)] dx を適当な初等関数を用いた変数変換で有理関数の積分に帰着させよ (積分は実行しなくてもよい) √(x(x+1)) = √(x^2+x) = (1/2)*√[{2(x+(1/2))}^2-1] 2(x+(1/2)) = 1/Cos[x] とおくと dx = {(2x+1)^2/2}*Sin[θ] dθ ∴∫√[x(x+1)] dx = ∫(1/2)√[(1/Cos^2[θ])-1]*{(2x+1)^2/2}*Sin[θ] dθ = ∫(1/4)*Tan[θ]*Sin[θ]/Cos^2[θ] dθ =… でいいのでしょうか? また、積分を実行するとしたらどうすればいいのか教えてください。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 不定積分∫dx/√(1-x^2)=arcsin(x)+Cの証明で 不定積分∫dx/√(1-x^2)=arcsin(x)+C を証明ですが、 x=sin(θ)と置換すると、 dx=cos(θ)dθより、 ∫dx/√(1-x^2) =∫cos(θ)dθ/√(cos^2(θ)) =∫cos(θ)dθ/|cos(θ)| ここでこの絶対値をどのように処理すればよいのでしょうか? ∫sin^-1xdxの不定積分 ∫sin^-1xdx という不定積分の問題なんですが,以下のように解いて見ました。 ∫sin^-1xdx =xsin^-1x-∫sin^-1xdx =xsin^-1x-∫x/√(1-x^2)dx =xsin^-1x+√(1-x^2)+C 途中式など展開はこれであってます?教えて下さい。 なぜe^xの後にdxがつくのかよくわかりません。 f(x)=e^x+sin(x)-xを積分すると、∫f(x)dx=∫(e^x+sin(x)-x)dxとなり 途中で=∫e^xdx+∫sin(x)-∫xdxとなるのですが、なぜe^xの後にdxがつくのかよくわかりません。 どなたかご教授願います。 不定積分 不定積分です。 ①∮(0→1)√(1+√x)/√xdx ②∮(0→3)(x+x^3)√(1+x^2)dx ③∮sinx/3+sin^2xdx ④∮x√(x^2+2)dx 朝の小テストで分からなかった問題です。どうか教えてください。 不定積分∮(x+5)/(x^2+5)dxの途中式を 不定積分∮(x+5)/(x^2+5)dxの途中式を教えて下さい。よろしくお願いします。 不定積分の問題 不定積分の問題ですが、部分積分法で解く問題ですが、考えても解答通りにならないので、ここで質問するに至りました。途中計算等を教えてください。お手数になりますが、どうか宜しくお願いします。 (1)∫x sec^(2)(x) dx 私が解くと、xtanx- sec^(2) + c になります。 (2)∫Tan^(-1)(x)dx (3)∫Sin^(-1) (x/3)dx (4)∫e^(-2x) sin3x dx ↑部分積分法を繰り返してもとめるのですが、どのような切り口で求めるのかが分かりませんでした。 答え (1) x tan(x) + log | cos(x) | + C (2) xTan^(-1) (x) - (1/2)log{x^(2) +1} + C (3) xSin^(-1) (x/3) + √(9-x^(2)) + C (4) {-e^(-2x)/13 } (2sin3x + 3cos3x ) + C ∫x^2√(1-x^2)の不定積分 ∫x^2√(1-x^2)の不定積分の問題なんですが, つぎのように解いてみたんですが, ∫x^2√(1-x^2)dx =3x^3√(1-x^2)-∫x^3[√(1-x^2)]'dx =3x^3√(1-x^2)-∫{-2x/[2√(1-x^2)]}x^3dx =3x^3√(1-x^2)-∫{x^4/√(1-x^2)}dx =3x^3√(1-x^2)-∫{1-x^4-1/√(1-x^2)}dx+∫dx/√(1-x^2) =3x^3√(1-x^2)-∫(1+x^2)√(1-x^2)dx+sin^-1x 左辺に∫x^2√(1-x^2)を移動して 2∫x^2√(1-x^2)=(3x^3-1)√(1-x^2)+sin^-1x+C よって ∫x^2√(1-x^2)=1/2{(3x^3-1)√(1-x^2)+sin^-1x+C} となりました。途中式・解答はあってますか? sin(x^2)やcos(x^2)の不定積分 sin(x^2)やcos(x^2)の不定積分が初等関数で表せないことはexp(-x^2)の不定積分が初等関数にならないことと、同様に証明できるはずだと思うのですが、どのようにして証明されるのでしょうか。「Mathematicaでできないからできない。」というようなことではなく、きちんとした論証を知りたいのです。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ご丁寧にありがとうございました。 複素関数の積分でも、正則であれば、不定積分の概念はあると思います。