- ベストアンサー
多項式の一番簡単な解き方
たとえば、6x^4-11x^3+x^2+33x-45=0 という多項式を解くときに、私はいつも解をひとつ見つけてから、徐々にXの係数を少なくして解いていくやり方をしています。 しかしこの、ひとつ解を見つけるという作業が非常に時間がかかってしまい(ただ数を式に当てはめて0になる数を見つけるまでやってるので)困ってます。なにか、数あてのコツなどありませんか? また他に、もっと速く解ける解き方があったら教えてください。 (ちなみに例に挙げた多項式の解は虚数の解も含んでいます)
- みんなの回答 (5)
- 専門家の回答
質問者が選んだベストアンサー
解を1つでも見つければ次数がさがりますので解き方そのものは良いですね。 解の候補は定数項の因数の±を付けたものを最高次の係数の因数でわったものが候補になります。 45=1*3*3*5 6=1*2*3 ですので 1,3,5,9,45 を 1,2,3,6 で割った数nに±を付けた±nが解の候補ですね。 y=f(x)=左辺 と置くと ただ機械的にf(±n)を計算すると、 最悪f(±n)=0となるnを見つけるのは、nのすべての組み合わせの半分の回数だけ試行しないといけませんね。 せっかく個々の候補の計算を有効に利用するとか、計算しやすい特定の整数の±nを優先計算して、解の候補の範囲を狭めることで試行回数を劇的に減らす工夫が有効ですね。 y=f(x)のグラフを描くと一番ですがそれも面倒なら f(±n)=0の±nの候補である±nの近くの小さい整数(0,±1,±2,...)に対する f(0),f(±1),f(±2),… を計算してみます。整数ですから計算がしやすいですね。 f(0)=-45 f(1)=-16 f(2)=33 ここで符号が変わる事に目をつけると ±nの候補で1<n<2の間に解があることが分かる。 ここからn=3/2,5/3が候補に絞られ、f(3/2)=0がすぐ見つかります。解の1つはx=3/2 続いて f(0)=-45 f(-1)=-60 f(-2)=77 ここで符号が変わる事に目をつけると ±nの候補で-2<n<-1の間に解があることが分かる。 ここからn=-3/2,-5/3が候補に絞られ、f(-5/3)=0がすぐ見つかります。解の1つはx=-5/3が得られます。 以上の試行で 元の式は(x-3/2)(x+5/3)⇒(2x-3)(3x+5)で因数分解できることが分かります。 実際にこれらの因数で因数分解すると (2x-3)(3x+5)(x^2-2*x+3)=0 となります。3項目の2次の因数からは虚数の解がでてきますね。 因数分解の解をどのように見つけたは解答に必ずしも書く必要はないですから、 f(3/2)=0,f(-5/3)=0なので因数定理により 6(x-3/2)(x+5/3)(x^2-2*x+3)=0 これから 因数分解結果は (2x-3)(3x+5)(x^2-2*x+3) と解答するだけでいいでしょうね。 途中の苦労は表にだす必要は無いですね。 f(3/2)=0,f(-5/3)=0はたまたま閃いて見つけたということで十分ですから。
その他の回答 (4)
- mister_moonlight
- ベストアンサー率41% (502/1210)
視察によつて簡単に因数を見つけられない場合、因数定理の補助定理を使うと良い。 整数係数の多項式:f(x)=A(0)*x^n+A(1)*x^(n-1)+‥‥‥+A(n-1)*x+A(n) (A(0)≠0)が有理数αに対して、f(α)=0を満たせば、α=±{A(n)の約数}/{A(0)の約数}。 計算は煩雑だが、この問題に適用してみると良い。 A(4)の約数=±1、±3、±5、±9、±15、±45。 A(0)の約数=±1、±2、±3、±6、
- owata-www
- ベストアンサー率33% (645/1954)
よくよく計算してみると、x=3/2と-5/3でしたか 整数の解だと代入して計算が簡単なんですがね… 私はめぼしい整数がダメな時は因数分解を試みます 6x^4-11x^3+x^2+33x-45=(a1*x^2 + b1*x + c1)(a2*x^2 + b2*x + c1) ここで、x^4の係数が6なので (a1 , a2)=(1,6)or(2,3)となります(便宜上a1<a2) 次に、x^3の係数は-11なのでそれを考慮すると 6x^4-11x^3+x^2+33x-45=(x^2 -2x +c1)(6x^2 + x +c2)or(2x^2 -3x +c1)(3x^2 -x +c2)となります。 あとはx^2 , x , x^0の係数があうようにc1 ,c2を定めると後者はダメで、前者でc1 =3、c2=-15となります。
- owata-www
- ベストアンサー率33% (645/1954)
x^4の係数は6です。x^0の係数は-45です。 つまり、 6x^4-11x^3+x^2+33x-45=0 が(ax-b)の因数を持つとしたら a=1,2,3,6 b=±1、±3、±5、±9、±15、±45 のうちのどれかです。 だから…って絞ることもできます。 ただ、勘なんですけど、今回はこれでは出ない気がするんですが…(問題が間違っているか有理数の解はないか)
- koko_u_u
- ベストアンサー率18% (216/1139)
>ひとつ解を見つけるという作業が非常に時間がかかってしまい困ってます。 うん。困るからこそ、工夫しようという気持ちになるんだよ。 まずは自力で考えてみましょう。
お礼
詳しく教えていただきありがとうございました。 とても、わかりすく先生みたいでした。(先生かな??) これで次から数当てるのが速くなりそうです。