- ベストアンサー
平均値の定理の問題の解き方
以下の問題の解き方がわからず、困っています。 解くにはとけたのですが、あっているかどうかわかりません。 わかる方、ご指南よろしくお願いします。 【問題】 次の関数に対して、「平均値の定理(3)」において、a=0としたときのθを求めよ。即ち、定数またはhの関数として表せ。 但し、h≠0は、0に十分近い数とする。 ※「平均値の定理(3)」 f(a+h)=f(a)+hf'(a+θh), 0<θ<1 x^2 + 1 【解答】 まず、f(a+h)を求める。 f(x)=x^2+1なので、 f(a+h) = (a+h)^2+1 = a^2+2ah+1+1 = a^2+2ah+2...(1) 次に、f(x)=x^2+1なので、f(a)を求める。 f(a)=a^2+1...(2) 最後に、f'(a+θh)を求める。 hf'(x)=2xより、hf'(a+θh)=2h(a+θh)...(3) (1)(2)(3)を、f(a+h)=f(a)+hf'(a+θh)に代入して a^2+2ah+2=a^2+1+2h(a+θh) 両辺を整理して a^2-a^2+2-1=2h(a+θh)-2ah 1=2ah+h^2θ-2ah h^2θ=1 よって、h^2θ=1が答え。
- みんなの回答 (2)
- 専門家の回答
お礼
的確なご指導ありがとうございました。 計算の間違いも指摘していただき、ありがとうございました。 大変助かりました。