締切済み 積分? 2008/11/07 20:20 1/(x^2 + a^2) はどうやって、xに対する積分をしますか? t=(x^2 + a^2) としたら、dt/dx=2x xは消せないので、困ります。 みんなの回答 (3) 専門家の回答 みんなの回答 noname#71111 2008/11/09 08:32 回答No.3 答えだけでよければ、wxMaximaというフリーソフトですぐ出ます。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 info22 ベストアンサー率55% (2225/4034) 2008/11/08 02:36 回答No.2 まず x=at,dx=adt と変数変換して I=∫1/(x^2 + a^2) dx =(1/a)∫1/(t^2 +1) dt ここで t=tan(u)と変数変換して dt=du/{cos(u)}^2=du{1+(tan(u))^2}=du(1+t^2) dt/(1+t^2)=du I=(1/a)∫du =(1/a)u+C =(1/a)arctan(t)+C ← 変数をuからtに戻す =(1/a)arctan(x/a)+C ← 変数をtからxに戻す (終わり) 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 proto ベストアンサー率47% (366/775) 2008/11/07 20:35 回答No.1 騙されたと思ってarctan(x/a)をxについて微分してみましょう。 そしてそれをヒントにすれば目的の積分はすぐに計算できます。 またx=a*tan(t)として置換する手もあります。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育自然科学科学 関連するQ&A x/(a^2+x^2)の積分について x/(a^2+x^2)の積分について t=a^2+x^2とおいて dt=2xdx よって ∫(x/(a^2+x^2))dx=(1/2)*∫(1/t)dt=(1/2)*log(t)+C と置換積分により積分することが出来ますが、 部分積分では計算できないのでしょうか? (a^2+x^2)'=2x ∫(x/(a^2+x^2))dx=(1/2)*∫[(1/(a^2+x^2))*(a^2+x^2)']dx として計算できると思ったのですが、うまく行きません。 どなたかアドバイス頂けたら幸いです。 (1/a) / (1 - x/a) の積分 ∫(1/a) / (1 - x/a) dx の積分は、 -log(1 - x/a)になるようなのですが、私が計算すると、 ∫(1/a) / (1 - x/a) dx → (1/a) ∫ 1 / (1 - x/a) dx ここで、t = 1 - x/a dt/dx = -1 , dt = -1 dx → (1/a) ∫ -1 / t dt → (-1/a) log t t = 1 - x/a なので、 → (-1/a) log (1 - x/a) となってしまい、1/aが余計なのです。 どこからおかしいのでしょうか? よろしくお願いします。 定積分の問題です。 定積分の問題です。 []内に示した置換によって、次の定積分を求めよ。 ∫(0から1)x√(1-x)dx [√(1-x)=t] 次の様に解答したのですが、間違っていたらご指摘いただけたらありがたいです。 √(1-x)=tとおくと、1-x=t^2,x=1-t^2,dx=-2tdt ∫(0から1)x√(1-x)dx=∫(1から0)(1-t^2)×t×(-2t)dt =∫(1から0)(-2t^2+2t^4)dt=∫(0から1)(2t^2-2t^4)dt =[2/3t^3-2/5t^5](0から1)=2/3-2/5=4/15 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 定積分 ∫[1→2](sinπx)^2dx この問題なんですが、置換積分を用いて t=πxとおいて dx=dt/π tの範囲は[π→2π] ∴∫[π→2π](1/π)(sint)^2dt =(1/π)∫[π→2π](sint)^2dt =(1/π)[(1/3cost)(sint)^3][π→2π] =0 ってなったんですが答えは1/2でした。 どうすればいいでしょうか? 定積分の問題です 解答したものの自信がないので すみませんが、わかる方、これでいいか教えてください。 (1)∫{1→2}(2x-3)^3dx 2x-1=tとおく。 dt/dx=2→dx=dt/2 x │1→3 ─┼─── t │1→3 (原式)∫{1→3}t^3*(dt/2)=1/2[t^4/4]{1→3} =1/2(81/4-1/4)=10 (2)∫1/(x(x+1)=log(x)-log(x+1)+C (Cは積分定数) 積分がわかりません いくつかわからないので教えていただきたいです。∫は省略します。 まずlog(1+√x)dxですが、t=√xと置換してdx=2tdtとなり 2tlog(1+t)dtとなります。しかしここからのやり方がわかりません。 次にcos^3xsin^2xdxですが、部分積分を使ってやってみたのですがどうもうまくいきません・・・しかし部分積分を使うのは間違いなさそうなんです。 次に(1/(x^3-x))dxですが、この式は1/x(1-x)(1+x)に変形できます。 分母が2つの掛け算ならば部分分数にできるのですが3つの掛け算なのでどうしたらいいのかわかりません。 次に(x/(x^3+1))dxですが、この式をx/(x+1)(x^2-x+1)と変形したあとのやり方がわかりません。 最後に、これが一番聞きたいことなんですが (1/cosx)dxの積分です。 分子分母にcosxを掛けてcosx/cos^2xとします。 sinx=tとおくと、dx=dt/cosxとなり、最初の式はdt/(1-t^2)になります。 部分分数にして1/2∫(1/(1+t)+1/(1-t))dtになります。 よって1/2(log|1+t|-log|1-t|)=1/2log|(1+sinx)/(1-sinx)|になりますよね?? でも、解答にはlog|(1+sinx)/cosx|って書いてあるんです。 どこが間違ってるのかわかりません。 以上長いですが教えていただけたら幸いです。 偶関数、奇関数の定積分の式変形について X=-tとおくと、dx=(-1)dt Xが-a→0のとき、tはa→0 下端-a、上端0の定積分∫f(x)dxは =下端0、上端aの定積分∫f(t)dtと変形できる。 ここまでは分かるのですが、そのあと =下端0、上端aの定積分∫f(x)dxと変形できてしまう理由が分かりません。 tの関数からxの関数に戻したとき、上端と下端の値も変わってしまい、もとの式にもどってしまいます。 定積分と微分の関係? F(x)=∫f(t)dt (定積分の区間は下端a、上端x)⇔F'(x)=f(x)かつF(a)=0 を証明する。 (→)d/dx・∫f(t)dt (定積分の区間は下端a、上端x)=f(x) かつF(a)=∫f(t)dt (定積分の区間は下端a、上端a)=0 であるから容易に証明される。 (←)F'(x)=f(x)であるからF(x)は不定積分の1つであり ∫f(x)dx=F(x)+C(Cは積分定数) またF(a)=0であるから ∫f(t)dt (定積分の区間は下端a、上端x)=[F(t)] (定積分の区間は下端a、上端x)=F(x)-F(a)=F(x) よって証明された。 とかいてあったのですがどういう意味なのかわからないんです!! 教えてください!! 不定積分の解き方がわかりません。 不定積分の解き方がわかりません。 (1)I=∫(2x+3)/(x^2+2x+2) dx (2)I=∫x/{(x+1)^(1/3) -1} dx 2番は、 {(x+1)^(1/3)=t として、 x+1=t^3 x=t^3-1 よって、 dx=3t^2 dt となって、 I=∫{(t^3-1)/(t-1)}* 3t^2 dt まではできたのですが・・・・ これからどう展開すればいいのかわかりません (>_<) どなたかお願いします。 不定積分の計算について 不定積分の式で置換不定積分法で解いてますが、 下記は参考書にのっていたものです。 計算をみていくと、どうしてもわからない場所が出てきました。 計算式の最後から2番目より分かりません。教えてください宜しくお願いします。 ∫x(5x-2)^3 dx t=5x-2 とおくと dt=5dx すなわちdx=(1/5)dtとなる。 またx=(t+2)/5 = ∫(t+2)/5 ・t^3 ・ (1/5)dt =1/25 ∫(t^4 + 2t^3 )dt =1/25(1/5t^5 + 2・1/4t^4)+C =1/25(1/5 (5x-2)^5 + 1/2(5x-2)^4 ) + C =1/250 (5x-2)^4 {2{5x-2}+5) + C ← ここから分かりません =1/250(5x-2)^4 (10x+1) + C ← 積分 証明 問題 積分 証明 問題 ∫[0~π](x・sinx)dxを求めよ。 I=∫[0~π](x・sinx)dxとおく。 x=π-tとおくと、dx/dt=-1、積分範囲はπ~0 I=∫[π~0](π-t)・sin(π-t)(-dt) =∫[0~π](π-t)・sin(π-t)dt =∫[0~π](π-t)・(sint)dt 2I=∫[0~π](x・sinx)dx+∫[0~π](π-x)・(sinx)dt =∫[0~π]πsinxdx =2π I=π 一点分からない点があります。 ∫[0~π](π-t)・(sint)dt=∫[0~π](π-x)・(sinx)dt について。単純にtをxに置き換えただけだと思いますが、 x=π-tと置換しているのに、t=xと同じ変数を使って再度 置換して良いのでしょうか? 以上、ご回答よろしくお願い致します。 置換積分法について 今置換積分を一人寂しく学んでいる者です(´・ω・`) 聞きたいことはいろいろあります(;・∀・) ∫x/(x+2)^2dx があったとしたらx+2をtに置き換えますよね? そうしたらdxをdtに変換するじゃないですか? その変換の仕方がいまいちわかりません>< そもそもdxとはどういう意味かさえ危ないです>< 上の式を計算すると∫t-2/t^2dtになり ∫(1/t-2/t^2)dtになるそうです。 そしたら logltl+2/t+cになると書いてあるのですが、2/t^2を積分したら 6/t^3に自分が積分したらなってしまいました;; どうやったら2/tになるのでしょうか>< あとはtをXに変換して答えになるので問題ないです。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 線積分 xy面上のスカラー場f(x,y)=xyに対し、線積分∫[C]drfを求めよ。 ただし、積分経路Cは(0,0)→(1,1)を結ぶ経路である。 C:x = t, y = t (t=0~1) dx/dt = 1 dy/dt = 1 ∴ ds = {√((dx/dt)^2 + (dy/dt)^2)}・dt = √(2)dt ここからどうすればよいのですか? 詳しい解説お願いします。 微分 積分 問題 微分 積分 問題 F(x)=∫[a~x]((x-t)^2)f(t)dtのときdF/dxを求めよ。 という問題なのですが、原始関数F(x)を求めて、微分すればよいのですが F(x)=∫[a~x]((x-t)^2)f(t)dtの積分がわかりません・・・ どのようにすれば良いのでしょうか? ご回答よろしくお願い致します。 微分・積分 問題 微分・積分 問題 d^2/dx^2(∫[0→x](x-t)f(t)dt)=f(x)を証明せよ。 x・∫[0→x]f(t)dt-∫[0→x]t・f(t)dtとしました。 上の式を積分して、2回微分しようと考えているのですが、 ∫[0→x]t・f(t)dtが分かりません。 d/dx(x・∫[0→x]f(t)dt)-d/dx(∫[0→x]t・f(t)dt)と1回微分して、さらにもう一度微分を行うと、d/dx(∫[0→x]f(t)dt+xf(x)-xf(x)) よって、d/dx(∫[0→x]f(t)dt=f(x) 解き方は合っているでしょうか? ご回答よろしくお願い致します。 e^-1/Tの積分 現在、次のような微分方程式を解かなければならず、 悪戦苦闘しています。 dx/dT=k/a*exp(-E/RT)*(1-x) この式のうち、k,a,E,Rは定数で既知なので、無視すると、 dx/dT = exp(-1/T)*(1-x) という微分方程式になります。 私はこの式をxとTの変数分離型の微分方程式と捉えて次のように変形しました。 dx/(1-x) = exp(-1/T)dT これの両辺を積分するのですが、左辺は ln{1/(1-x)} という答えになるのがわかるのですが、右辺の ∫exp(-1/T)dT という積分が解けません。 どなたか教えていただけませんでしょうか。 よろしくお願いいたします。 広義積分 こんばんは。工学部の大学一回生です。 広義積分について質問します。 ∫6x^2/(1+x^3)^3dx 範囲は0から∞です。 x^3=t とおいて dx=dt/3x^2 という感じで解いたら、 ∫2t/(1+t)^3dt 範囲は0から∞です。 となりました。 ここからどのように解けばわかりません。 ココからの解き方あるいは、間違ってたら教えてください。 置換積分法 ∫x(3x-2)^3 dx を(t=3x-2)の置換により、この不定積分を求めます。 x=(1/3)t + (2/3)であるから dx/dt=1/3 それで、 ∫x(3x-2)^3 dx=∫(1/3)(t+2)t^3×(1/3)dt この式変形が分かりません・・・。 「∫f(x)dx=∫f(g(t))g'(t)dt [x=g(t)] の公式を使ってるのかなぁ・・・とも思いつつうえのようには出来ません。 ちなみにdx/dtっていうのはdxをdtで微分しますって意味でしたよね・・・? このdってのは「微分します」ってことでしょうか・・・? いつもあまり意味なく形式的に書いてしまっていたので・・・ おねがいします。 積分計算 以下の積分計算、間違っているのですが、どこで間違っているのかご指摘お願いいたします。 ∫{(sin x)^3・cos x }dx cos x = t とおくと、 -sin x ・ dx = dt よって、与式は ∫-(sin x)^2 ・ t ・ dt = ∫ (t^2 - 1)t・dt = 1/4 (t^4 - 2t^2) = 1/4 (cos x)^2 {(cos x)^2 -2} 積分 ∫(1/(1+(x^2)))dx =arctan(x) ということから置換積分を用いて t=ixとおいて dx/dt=-i ∫(1/(1-(x^2)))dx =∫(1/(1+(t^2)*(-i)))dt =-i*∫(1/(1+(t^2)))dt =-i*arctan(t) =-i*arctan(ix) となってしまいました。 最初の式には、虚数単位がなかったのですが、 結局、虚数単位が二ヶ所出てきました。 この式は複素関数なのでしょうか。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 自然科学 理科(小学校・中学校)化学物理学科学生物学地学天文学・宇宙科学環境学・生態学その他(自然科学) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など