- ベストアンサー
図形と方程式
「2009 センター対策 重要問題演習数学標準編」の数IIの範囲で授業を聞いてもわからないところがあったので質問させて下さい。 問)xy平面上に2点A(-9,-2),B(3,2)がある。線分ABを3:1に内分する点をC,3:1に外分する点をDとする (1)点Cの座標は(ア,イ),点Dの座標は(ウ,エ)であり,2点C,Dからの距離の比が1:2である点の軌跡をKとすると,Kは中心がE(オカ,キ),半径がク√(ケコ)の円である。 (2)(1)のとき,円K上に動点Pをとる。 直線PDが円Kの接線となるとき,ΔPBDの面積はサシ√スである。 また,点RをΔCDPの重心とするとき,点Rは円x^2+y^2-セx-(ソタ)y/チ+ツ/テ=0上にある。 (1)は内分外分の公式からC(0,1),D(9,4) K(X,Y)とおき条件より式を立てKの方程式から求めるとE(-3,0)となり半径2√10となりました。 (2)は直線PDの方程式をy=m(x-9)+4としやろうとしたのですが計算がややこしい式になってしまいストップしてしまいました。 この先の説明をぜひお願いします。
- みんなの回答 (2)
- 専門家の回答
お礼
ありがとうございます わかりました