ベストアンサー 2次の行列環 2002/12/05 00:47 「2次の行列環M_2(R)は非可換環であることを示せ。また0因子をもつことを示せ。」なんですが、何か例を教えてください。お願いしますm(__)m みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー noname#24477 2002/12/05 01:31 回答No.1 1行目[1 0] 2行目[0 0]という行列と、1行目が[0 0]で2行目が[1 0]という 行列を考えてもらえば零因子であることと、非可換であることが一偏にわかると 思います。 質問者 お礼 2002/12/05 18:22 ありがとうございましたm(__)m 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A n次の行列環について 「n次の行列環M_n(R)は非可換環であることを示せ。(n≧2)また0因子をもつことを示せ。」なんですが、何か例を教えてください。お願いしますm(__)m 環の問題です 「正方行列全体の作る環は一般には非可換な環であることを示せ」 という問題なのですが 「一般には」というところで引っかかってしまいました 解ける方ヒントだけでも結構ですのでよろしくお願いします 代数の環の分野の問題です 代数の環の分野の問題です 環Rが与えられたときMn(R)をRの元を成分にもつn字正方行列全体の集合とし、 行列の加法、乗法を通常のように定義すると Mn(R)はまた環でありn≧2のとき非可換であること を示したいです 教えてください お願いします 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 代数の環の分野の問題です 代数の環の分野の問題です 環Rが与えられたときMn(R)をRの元を成分にもつn字正方行列全体の集合とし、 行列の加法、乗法を通常のように定義すると Mn(R)はまた環であり一般にn≧2のとき非可換であること を示したいです 教えてください お願いします 環の問題です。 Rを可換環,S(⊂R)を積閉集合とする。R可群Mに対し、 Τ(M):={x∈M|あるa∈Sに対しax=0}とおく。 (1) Τ(M)はMの部分R可群であることを示せ。 (2) N:=M/Τ(M)とおく。Τ(N)=0を示せ。 よろしくお願いします。 整数環・多項式環 さまざまな単位的可換環Rとその部分集合Iで、次の性質を満たすものを整数環や多項式環などについて、例をあげよ (1)加法部分群にならない (2)加法部分群だがイデアルでない (3)イデアルだが素イデアルでない (4)素イデアルだが極大イデアルでない (5)極大イデアルである なのですが、どれか一つでもいいので教えてください またまた部分環 n次の上三角行列全体B_n(R)は一般のn次行列M_n(R)の部分環であることを示せ。 なんですが教えてください、お願いしますm(__)m 零因子と整域について Xが+に対して可換群,・に対して半群をなし,分配法則x(y+z)=xy+xz、(x+y)z=xz+yzをなす時Xを環と呼ぶ。 ・に関しての単位元を持つ環を特に単位的環と呼ぶ。 それでa≠0,b≠0でab=0なる環の元を零因子と呼ぶと思うのですが 実際,単位的環ではなくただの環で零因子を持つような環って存在するのでしょうか? そして零因子を持たない可換な環を整域と呼ぶようですが。 零因子を持たない非可換な環には特に呼び方はあるのでしょうか(非可換な整域?)? 付値環 付値環 記号の約束:a^-1:ここではaの逆元とします。 a∈R:aはRに含まれる a¬∈R:aはRに含まれない 永田 可換体論 p149 (可換)体Kの部分環について次の条件は同値 (イ)RはKの付値環である。 (ロ)a∈K、a¬∈R⇒a^-1∈R (ハ)(1)Rの商体はKであって (2)a、b∈R 、a¬∈bR⇒b∈aR (質問) (ロ)→(ハ) (1)「Rの商体はK」は明白とありますがその理由を教えてください。 ブール環 環Rの任意の元aに対して、a^2=aが成り立つとき、Rは可換環 である。 の証明について質問します。 [証明] ∀a,b∈Rについてa+b=(a+b)^2=a+ab+ba+b よってab+ba=0. ab=-ab これでは可換とはいえないですよね? a=bとすると…と続ければ良いのでしょうか? 代数学:環に関する問題!! R:環 ∀x∈R s.t x^2=x このとき、Rは可換環であることを示せ。 (x^2はxの二乗) という問題なのですが、 私の解答は x、y∈R (x+y)^2=x^2+xy+yx+y^2 =x+xy+yx+y =x+y ∴ xy+yx=0 ∴ xy=-yx =(-y)x ={(-y)^2}x =(y^2)x =yx ゆえに、可換環である。 なのですが、それはx+y∈Rが成り立てば、です。 x、y∈Rの時x+y∈Rは成り立つのでしょうか?教えてください。 また、成り立つ以前に証明の仕方が違うならご指摘お願いします(><) 環と多元環の違いについて教えて下さい。 http://ja.wikipedia.org/wiki/%E5%A4%9A%E5%85%83%E7%92%B0 多元環とは単に環というものに対して可換であるという条件をつけたものであると思うのですが、合っていますでしょうか? 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 環の問題です。早めの回答希望です。 Rを可換環、SをRのイデアルとする。 R⊃S+I:={s+a|s∈S,a∈I}とおく。 (1) S+IはRの部分環であることを示せ。 (2) S/(S∩I)と(S+I)/Iが同型であることを示せ。 よろしくお願いします。 部分環と全射準同型 M_n(R)をn次行列全体、B_n(R)をn次の上三角行列全体、T_n(R)をn次の対角行列全体とする。このとき、 (1)T_n(R)はM_n(R)の部分環であることを示せ。 (2)B_nの行列に対してその対角成分を対応させる写像 はB_nからT_nへの全射準同型であることを示せ。 なのですが、わかりません。ひとつでもいいので教えてください、お願いしますm(__)m 代数の環の分野の問題です 代数の環の分野の問題です 可換環Rが与えられたとき文字Xを不定元とする R係数の多項式は p(X)=a_nX^n+a_n-1X^n-1+…+a_1X+a_0 =Σ(i=0からn)a_iX^i (a_i∈R) なる形のものです Xを不定元とするR係数の多項式全体の集合は可換環をなしこの可換環をR[X} とします R[X_1X_2,…,X_n]=(R[X_1X_2,…,X_n-1])[X_n] が定義され R[X_1X_2,…,X_n]をR上のn変数多項式環、 その元をR係数n変数多項式というとき n変数多項式は整理すると Σ_(0≦i_1,i_2,…,i_n) a_i_1i_2…i_nX_1^i_1X_2^i_2…X_n^i_n (a_i_1…a_i_n∈Rで和は有限和)とかける ことを示したいです 教えてください 文章分かりにくくてごめんなさい 余因子 小行列 余因子行列 余因子とは、例えば2行2列の正方行列 A=(1 2) (3 4) において、行列Aの1行1列目の成分における余因子は、 a^~11=(-1)^1+1|4| のように表されます。 また、小行列式とは上の2行2列の行列において 1行1列目の成分における小行列式は、 D11=|4| のように表されます。 余因子行列は逆行列を求める際に利用されます。 上の2行2列の行列の余因子行列をA^~とします。 余因子行列は余因子をそれぞれの成分毎に並べて さらに転置した行列です。 ここで、良く分からない点があります。 余因子と小行列式の違いは、あるのでしょうか? 符号の違いだけでしょうか? 私の認識では、余因子に比べ小行列式は 行列から着目している成分を排除した だけと認識しています。 また、ネットで調べると余因子と小行列式は同じ事を 示しているページもあり混乱しています。 余因子の記号チルダについて私が持っている、 初心者向けの参考書には、余因子にも余因子行列 にも~(チルダ)が付いています。 これもネットで調べると、余因子にチルダがついていない 場合があったりして混乱しています・・・ 以上、質問内容をまとめますと、 ・余因子と小行列式の違いはどこ? ・余因子にも、余因子行列同様にチルダ記号が必要か? 特に取り決めがない場合は、現在の主流の方を教えて下さい。 以上、説明がちょっとへたくそですがご回答よろしくお願い致します。 積に関して可換な行列 ふと疑問におもったのですが、一般的にある行列と可換な行列どうしは可換なのでしょうか。 γ行列について質問です γ^μ (0,1,2,3)をDirac表現とは限らないγ行列とする。すべてのγ行列と可換な行列は単位行列に限ることを示してください。 2行2列の行列の集合で、可換な集合 2行2列の実数に成分を持つ行列の集合Mの部分集合で、ふつうの和と積で、可換になるものはどのようなものがあるでしょうか。 零行列と単位行列が必要なのは当然として、他にどのような成分を添加すれば可換なものになるのでしょうか。 Rが可換環の時、MがR上の左加群なら右加群でもあることの証明 お世話になります。よろしくお願いします。 表題の通りなのですが、 Rが可換環の時、MがR上の左加群なら右加群でもあることの証明が 分からずに困っています。 質問を正確に書きますと Rは可換環、Mは加法で定義された可換群とします。 R×MからMへの演算 (r,m)→rmが定義されています。 この時 (1)r(m + m') = rm + rm' (2)(r + r')m = rm + r'm (3)(rr')m = r(r'm) (4)1m = m が成り立つなら、(これが左加群の定義) (1)’(m + m')r = mr + m'r (2)’m(r + r') = mr + r'm (3)’m(rr') = (mr)r' (4)’m1 = m が成り立つことを示す、(これが右加群の定義) というものです。 (1)、(2)、(3)、(4)のうち1つでもいいので よろしくお願いします。 質問が分かりづらい時は こちらの命題1、3を参考にしてください。 http://www.google.co.jp/search?hl=ja&safe=off&q=%E5%8F%B3%E5%8A%A0%E7%BE%A4%E3%80%80%E5%8F%AF%E9%99%A4%E5%85%83&btnG=%E6%A4%9C%E7%B4%A2&lr= 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ありがとうございましたm(__)m