- ベストアンサー
集合と論理
「f(x)=x^2+ax+b とする。∀n∈Z に対して、f(n)が偶数となるためのa,bの条件を求めよ。」 この問題に対して私は以下のように解答しました。 「(ⅰ)nが偶数 つまりn=2p(p∈Z)と表わせるとき f(n)=f(2p)=2*2p^2+2ap+b f(n)が偶数となるとき bが偶数であることが必要 (ⅱ)nが奇数 つまりn=2q+1(q∈Z)と表わせるとき f(n)=f(2q+1)=2*2q^2+2(a+2)q+a+b+1 f(n)が偶数となるとき a+b+1が偶数であることが必要 (ⅰ),(ⅱ)より f(n)が∀n∈Z に対して偶数となるとき aは奇数、bは偶数であることが必要 逆にaは奇数、bは偶数 すなわち a=2s+1(s∈Z), b=2t(t∈Z) であるとき f(x)=x^2+(2s+1)x+2t となり (a)nが偶数 つまりn=2p(p∈Z)と表わせるとき f(n)=2*2p^2+2p(2s+1)+2t となり f(n)は偶数 (b)nが奇数 つまりn=2q+1(q∈Z)と表わせるとき f(n)=2*2q^2+2(2s+3)q+2t+2 となり f(n)は偶数 となるから f(n)は∀n∈Z に対して偶数となる 以上よりn∈Z に対して、f(n)が偶数となるためのa,bの条件は aが奇数で、bが偶数であること」 設問に対する証明はこれで良いのでしょうか。
- みんなの回答 (4)
- 専門家の回答