- 締切済み
どうしてもわからなく困っています。
以下の問題なのですが1、ではどう評価していいか方針が立たず、2,ではどのようにすればガウスが消せるのかわかりません。 解答がなく困っています。どうか宜しくお願いします。 実数αについて[α]はを超えない最大の整数とする。 既約分数p/q(0<p<q)について、数列{an}(0≦an<1)を an=np/q-[np/q] , n=1,2,3,….. とおく。 1.n-mがqで割り切れるとき、an=amを示せ。 2.a1,a2,a3,….,aqは相異なる個の和であって、さらに a1+a2+…..+aq=(q-1)/2 が成り立つことを示せ。
- みんなの回答 (4)
- 専門家の回答
みんなの回答
- momordica
- ベストアンサー率52% (135/259)
2についてですが、 まず、pとqが互いに素であることよりnp/q が整数になるのはnがpの倍数の時だけですから、 1<=n<=q-1 のとき 0<an<1 , n=q のとき an=0 …(1) となります。求める和をSnとおくと、aqは0なので、 Sn=a1+a2+a3+…+a(q-1) です。 ここで、これと加える順番を逆にしたものを足してみます。 Sn = a1 + a2 + a3 + … + a(q-1) +) Sn = a(q-1) + a(q-2) + a(q-3) + … + a1 ――――――――――――――――――――― 2Sn = (a1+a(q-1)) + (a2+a(q-2)) + (a3+a(q-3)) + …+ (a(q-1)+aq) =Σ(k=1→q-1)(ak+a(q-k)) … (2) ( Σ(k=1→n)(ak) = a1+a2+a3+…+an ) さて、ここで出てきた ak+a(q-k) (k=1,2,…,q-1) についてですが、anの定義より、 ak+a(q-k) = kp/q-[kp/q] + (q-k)p/q-[(q-k)p/q] = p -[kp/q] -[(q-k)p/q] p , [kp/q] , [(q-k)p/q] はすべて整数ですから、 ak+a(q-k) も整数です。 ところが、(1)より 0<ak<1 , 0<a(q-k)<1 ですから、 0<ak+a(q-k)<2 となるので、 1<=k<=q-1のすべてのk について、 ak+a(q-k)=1 となります。したがって、(2)式より 2Sn=Σ(k=1→q-1)(1) =q-1 Sn=(q-1)/2 こんな感じでいかがでしょうか。
- banakona
- ベストアンサー率45% (222/489)
#2です。乗りかかった船なので2もやってしまいました。ただ、答案としては難があるので、数学っぽく整理してください。 1.の結果(特に(4)(5))から、n-mがqで割り切れなければan≠amも言えることが分かる。 a1,a2,a3,….,aqから任意の2個を選んで、これらをn,mとするとn-mはqで割り切れない。 よってa1,a2,a3,….,aqは全て相異なる。 ・・・(*) さて、a1,a2,a3,….,aqは、1/q,2/q,3/q,・・・、(q-1)/q,0を適切に並べ替えたものに過ぎない。なぜなら、・・・ ・数列{an}の定義から、anはp/qをn倍したものの小数部であり、(*)により、これらの中に重複は無い。 ・p/qをn倍したものの小数部はq種類しかない。 ※「小数部」がピンとこなければ、np/qを帯分数に直したときの、整数を除いた部分と思ってください。そうすれば、1/q,2/q,3/q,・・・、(q-1)/qしかないのは明らかです。おっと、ゼロをお忘れなく。 以上から、a1,a2,a3,….,aqには、1/q,2/q,3/q,・・・、(q-1)/q,0が漏れなくかつ重複なく現れる。 よって a1+a2+…..+aq=1/q+2/q+3/q+・・・+(q-1)/q+0=・・・
- banakona
- ベストアンサー率45% (222/489)
1だけですが、優等生っぽくない回答を。 0≦an<1 ・・・(1) 0≦am<1 ・・・(2) は数列{an}の定義から明らかですね? (2)の各辺に-1をかけて順番を逆にすると -1<-am≦0 ・・・(3) (1)+(3) -1<an-am<1 ・・・(4) 等号の有無が気になるかもしれませんが、落ち着いて考えればこれでOKだと分かります。 次にan-amをまともに計算します。 an-am=np/q-[np/q] -mp/q-[mp/q] =(n-m)p/q-[np/q] -[mp/q] ・・・(5) (5)は3つの項からできていますが、第2項、第3項は共にガウス記号なので整数。第1項はn-mがqで割り切れるので、これも整数。よって(5)は、整数から整数を2個ひいているので、やはり整数。 つまりan-amは整数。(4)を満たす整数は0しかないのでan-am=0。よってan=am
- Ama430
- ベストアンサー率38% (586/1527)
1.an-am=0を示します。 n-m=bq とすると n=m+bq より (np/q-[np/q])-(mp/q-[mp/q]) =(n-m)p/q-[(m+bq)p/q]+[mp/q] =bp-[mp/q+bp]+[mp/q] =bp-[mp/q]-bp+[mp/q] =0 2.ちょっと考えただけではわからなかったのですが、 p/q + 2p/q + 3p/q +....+ pq/q =(p/q)×q(q+1)/2=p(q+1)/2 なので、 [p/q]+[2p/q]+[3p/q]+....+[pq/q]=p(q+1)/2-(q-1)/2 を示すことと同値です。 pとqの関係で同じ数字が何個続くか変わるので、 q=bp+c (c<p) q=dc+e (e<c) などと表して変形してみてはどうでしょうか。
お礼
ありがとうございます。 私もさっきp,qが自然数であることに気づき1は解けました。 2は変形などしてがんばってみます。 ちなみに私はa1+a2+......+a2q=2(a1+a2+.....+aq) として1を利用しようと思ったのですがいかがでしょうか。