ベストアンサー sinx/x の積分 2008/06/02 03:56 sinx/x の積分について質問です。 積分範囲-∞~+∞だと求めることができますが、 積分範囲a(定数)~+∞の場合、求めることは可能でしょうか? 教えてください。よろしくお願い致します。 みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー info22 ベストアンサー率55% (2225/4034) 2008/06/02 10:24 回答No.1 a=0の場合は 積分範囲-∞~+∞の積分の1/2になります。 aがゼロ以外の定数では 初等関数の範囲では積分できません(高校の数学の範囲では)。 収束しますので数値積分は可能です。 特殊関数Si(x)(参考URL参照)を使えば積分結果を表現でき、積分値も存在します。 積分値=(π/2)-Si(a) 参考URL http://keisan.casio.jp/has10/SpecExec.cgi?path=08000000.%93%C1%8E%EA%8A%D6%90%94%2F07000500.%90%CF%95%AA%8A%D6%90%94%2F10000900.%8EO%8Ap%8A%D6%90%94%90%CF%95%AA%20Si(x)%2CCi(x)%20(%95%5C)%2Fdefault.xml http://netnumpac.fuis.fukui-u.ac.jp/cgi-bin/numpac/htoh?si.html http://www.sra.co.jp/people/miyata/algorithm/si.txt http://ja.wikipedia.org/wiki/Sinc%E9%96%A2%E6%95%B0 参考URL: http://algo.inria.fr/esf/function/SI/SI.pdf 質問者 お礼 2008/06/02 14:20 どうもありがとうございます。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (1) siegmund ベストアンサー率64% (701/1090) 2008/06/02 10:30 回答No.2 この関数は正弦積分と呼ばれる関数で, 初等関数の組み合わせでは表現できないことが知られています. (1) Si(x) = ∫{0→x} (sin x/x) dx が一番普通の正弦積分ですが, (2) si(x) = - ∫{x→∞} (sin x/x) dx = Si(x) -π/2 という変種もあります(大文字小文字と負号注意). 正弦積分で検索するといっぱい出てきます. http://mathworld.wolfram.com/SineIntegral.html にはグラフが載っています(英語ページですが). 質問者 お礼 2008/06/02 14:19 どうもありがとうございました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A sinx/xの二重積分 ∫[0→π/2](∫[y/2→y]sinx/x dx)dy+∫[π/2→π](∫[y/2→π/2]sinx/xdx)dy という問題なのですが、sinx/xの積分は初等関数では解けないらしく特殊関数Si(x)を使うらしいのですが、まだSiは習っていません。 積分範囲-∞~+∞だとsinx/xを求めることができるらしいのですが、 この問題は積分範囲を-∞~+∞に変更するのですか? 累次積分∮∮(D)sinx^2dxdy 累次積分∮∮(D)sinx^2dxdy D:{y≦x≦1,0≦y≦1} の積分順序を変更し、その値を求めよ。(書き込みが見やすいように範囲の条件式を書きました。xから積分します。) という問題があります。 積分順序を変更すると ∮∮(D)sinx^2dxdy D:{0≦x≦1,0≦y≦x} (yから積分。) となり、ここまではあっていましたが、sinx^2がどうしたら積分出来るのかわかりません。 sin^2xなら2倍角の公式を用いれば解くことができると思いますが、sin^2xとsinx^2は別物ですよね? 解答では (1/2)*(1-cos1) となっています。 この答えの導きを詳しくお願いしたいです。 よろしくお願いします。 (1+sinx)/sin2xの積分 (1+sinx)/sin2xの不定積分の答えがわかりません。 できれば答えを途中式と一緒に教えていただきたいです。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム lim[x→0](sinx)/x=1 の厳密な証明、sinxの定義 高校の教科書では、 0<x<π/2のとき,面積を考えて、 (sinx)/2<x/2<(tanx)/2 2をかけて、辺々の逆数を取ると, cotx<1/x<cosecx 辺々にsinxをかけると, cosx<sinx/x<1 lim[x→0]cosx=1 挟み撃ちの原理より,lim[x→0]sinx/x=1 と書かれています。 これを出発点として、(sinx)'=cosxが分かり、三角関数の微積分が構築されます。 しかし、面積は厳密には、積分で定義され、微積分学の基本定理から、微分の逆演算として計算されます。 すると、面積を用いて、lim[x→0](sinx)/x=1を証明するのは循環論法。 lim[x→0](sinx)/x=1 の厳密な証明を、sinxの定義とともに教えてください。 積分区間 積分区間(0→π)sinx/(2-(cosx^2))を積分する問題です。よろしくお願いいたします。 解答はこれをcosx=tと置換しているのですが、私は、解答を見る前は自分では、sinx=tと置換しました。が、置換するときに置換範囲で困ってしまいました。というのもxが(0→π)のとき、tの積分範囲は0→0になってしまったからです。でも、この場合xが(0→π)のときsinxは0≦sinx≦1と動くので、積分範囲は置換後0→1となるのでしょうか?でもなんだかおかしいような気がします。でもなにがおかしいのかわかりません。 そもそもsinx=tと置換すること自体が間違いなのでしょうか?それとも、sinx=tと置換するのも間違いではないが、その場合は、・・・その場合は範囲はどうなりますか? よろしくお願いいたします。 すべての実数xに対し、-4≦sin2x+a(sinx+cosx)+a≦ すべての実数xに対し、-4≦sin2x+a(sinx+cosx)+a≦9が成り立つような定数aの値の範囲を求めよ。という問題なのですが sinx+cosx=tと置くと、sinx+cosxを2乗して、1+2sinxcosx=t^2,sin2x=2sinxcosx=t^2-1よりsin2x+a(sinx+cosx)+a= t^2+at+a-1と置けますよね。ここでsinx+cosx=t=√2(sinxcosπ/4+cosxsinπ/4)=√2sinx(x+π/4)より-√2≦t≦√2 となると思うのですが、ここからが分かりません。平方完成したときにf(t)=(t+a/2)^2-(a^2/4)+a-1となりますがこのとき軸 t=-a/2の位置で場合分けするとありますが、解答を見ると軸≦-√2のときと軸>√2の場合が記載されています。軸>√2の場合は結局そのような値はないという解答になるのですがそれ以前にtのとりうる範囲は-√2≦t≦√2なのになぜ軸≦-√2のときと軸>√2の場合を調べるのはおかしくないですか?どなたか教えていただけないでしょうか? sinx/x 不定積分と定積分 ∫sinx/xdx は求められないけど、級数で表せるそうなのですが、どのように表せますか。 もうひとつ、定積分∫(0->∞)sinx/xdx の求め方を、数学の得意な方は教えてください。 積分 微分方程式を解く過程で C(x) = ∫(sinx)(cosx)*e^(sinx)dx を解くことになったのですが、これは解けるのでしょうか? ∫(cosx)e^(sinx)dx なら =e^(sinx) と解けるのですが。 ちなみにそもそもの問題は y' + (cosx)y = (sinx )(cosx) で、定数変化法を使って解き、まず右辺=0の解が y = Ce^(-sinx) :Cは積分定数 と求まったので、C=C(x)として最初の式に代入して今回質問した積分がでてきました。 よろしくお願いします。 (sinx)^3の積分 (sinx)^3の積分はどうすればいいでしょうか!? ・-・ 積分 問題 1/sinx について 積分 問題 1/sinx について ∫(1/sinx)dxについて。 ∫(1/sinx)dx=∫(sinx/1-cos^2x)dxとする。 cosx=tの置換と部分分数分解を用いて、 1/2(log|(1-t)/(1+t)|)+C まで求めました。 結果、1/2(log|(1-cosx/(1+cosx))|)+Cとなると思います。 テキストの回答が、1/2(log(1-cosx/(1+cosx)))+C と絶対値無しで記載されているのですが、絶対値は必要無いのでしょうか? なぜ絶対値が外せるのでしょうか? (logx)’はlog(-x)’と同じなのでlog|x|’としていると考えているのですが、 絶対値はあっても無くても良いのでしょうか? ご回答よろしくお願い致します。 1/(sinx)^2の定積分 1/(sinx)^2の定積分についての質問です。 これのxが(π/4)→(π/2)まで動くときの定積分なんですが、どのようにすれば求まるのかヒントをお願いします。 (sinx)^2=1-2cos2xを使ったのですが、行き詰ってしまったので、ヒントをお願いします。 sinx/x グラフ f(x)=sinx/xのグラフを書くとx=0は定義できない様なのですがこれはなぜでしょうか? lim[x→0]sinx/x=1は理解できます。 xを限りなく0に近づけた場合sinx/xは1に収束します。 では、なぜsinx/xはx=0で定義できないのでしょうか。 x=0とxを限りなく0に近づけると言う事は同じではないのですか? 以上ご回答よろしく御願い致します。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 「ルベーグ積分」と「リーマン積分」 f(x)=sinx/xにおいて範囲が[0,∞)のとき、f(x)は広義ルベーグ積分であることはわかりますが、質問したいのは次のことです。f(x)は広義リーマン積分は可能だが、狭義でのルベーグ積分が可能でないのはどうしてですか?どなたか教えてくださいm(__)mお願いします。 cosx/sinxの積分を教えてください cosx/sinx (=1/tanx) の積分がわからないです。 答えは(sinx)^2になるらしいのですが、どう計算したらいいのかわかりませんでした。 複素積分 ∫[-∞→∞] (sinx)/x dxについて ∫[-∞→∞] (sinx)/x dx=π について教科書の解説を見ても理解出来ないところがあったので教えてください。 手持ちの教科書では次のような流れで計算をしていました F(z)=exp(iz)/zとおく F(z)はz=0に1位の極を持つのでz=0を避けるような経路C(添付図)をとる … (1) D2は半径εの半円弧である F(z)はCで正則なので∫[C] F(z)dz = 0 … (A) F(z)の経路C=R+U+L+D1+D2+D3においてR,U,Lでの積分は0(証明長くなるので省略) また、D2での積分は ∫[D2] F(z) dz = ∫[D2] {F(z)-(1/z)} dz +∫[D2] (1/z) dz と分けるとF(z)-(1/z)はz=0で正則なのでε→0のとき積分の値は0 … (2) ∫[D2] (1/z) dz は z=εexp(iθ)とおいて計算すると-πiになる (A)でX,Y→∞ ε→0とすると ∫[-∞→∞] (exp(ix)/x dx - πi =0 …(B) exp(ix)=cos(x)+isin(x)より、 ∫[-∞→∞] (cosx)/x dx + i∫[-∞→∞] (sinx)/x dx = πi 両辺の虚部をとって 虚部をとって∫[-∞→∞] (sinx)/x dx=π ここまでが教科書での解答の大まかな流れです 疑問点は以下のとおりです A:(1)で0を避けた理由 B:(2)でF(z)=F(z)-(1/z)+(1/z)と分けたのはどこから来たのか C:(2)でF(z)-(1/z)はz=0で正則とあるがz=0で1/zは定義できないのに正則? D:D1とD3は回答中で触れてないが無視していいのか E:この問題はタイトルの積分を留数定理で解けという問題だったのですが留数定理使ってないような? 長くなりましたがよろしくお願いします (sinx)^6の積分を教えてください 大学生で家庭教師をしていますが、(sinx)^6の積分を教えてください。三倍角の公式を二乗して解いたのですが何回やっても答と合いません。 積分の問題で分からないことがあります。 {2-sinx+(sinx)^2}/cosxをπ/6から0で積分しろという問題でt=sinxと変数変換するということはどのようにして決められるのですか。また、√(a^2-x^2)をaから0で積分する問題でx=a*sintと変換する訳も出来ればお教え下さい。 三重積分 ∫∫∫Dx^3y^2z dxdydz , D={(x,y,z)|0≦z≦y≦x≦a} 積分範囲がDです。この積分って、 zを0≦z≦y、yを0≦y≦x、xを0≦x≦aで 積分すればいいんですか?? ∫∫∫Dx^2 dxdydz , D={(x,y,z)|x^2+y^2+z^2≦a^2} (aは正の定数) 積分範囲がDです。この積分の範囲ってどうやってとればいいんですか? この積分の解き方を教えてください。 マクローリン展開と置換積分(∫xcosxdx) 現在大学2年で理工学部で物理専攻しています。 そこで、 ∫xcosxdx -(#) についての質問なんですが、 (#)=∫x(sinx)'dx とおくと、高校数学の範囲で (#)=cosx+xsinx+C(積分定数) とわかるのですが、 (#)=∫(x^2/2)'cosxdx とすると、nの偶奇によって最終項が変わりますが、 (#)=cosx(x^2/2! - x^4/4! + x^6/6! -・・・)+sinx(x^3/3! - x^5/5! + x^7/7! - ・・・) + ∫(x^n/n!)sinxdx もしくは (#)=cosx(x^2/2! - x^4/4! + x^6/6! -・・・)+sinx(x^3/3! - x^5/5! + x^7/7! - ・・・) + ∫(x^n/n!)cosxdx となります。 マクローリン展開を使うと、 (#)= cosx + xsinx - 1 + ∫(x^n/n!)cosxdx or (#)= cosx + xsinx - 1 + ∫(x^n/n!)sinxdx になります。 これがcosx+xsinx+C(積分定数)になるには最終項の積分が定数にならなくてはおかしいと思うのですが、この最終項が定数に収束することって証明できるのでしょうか? または、この考察はどこか間違いがあるのでしょうか? よろしくお願いします。 xの範囲についてx<(1/3)(2sinx+tan 次の不等式を証明せよ x<(1/3)(2sinx+tanx), x>0. という問題で、xの上限がないのですが、 例えば、x=4πとかにしたら成り立たなくないですか? πって結局実数ですから、概ね3.14くらいとかんがえていいんですよね? (2sinx+tanx)/3 でx=4πだと、4π(≒12~13)<0になってしまいませんか? それともこういうときは常識的な範囲で0~πとかと考えるものなのでしょうか?もしくは、成立する範囲をしめして、ほかでは成り立たないといったようなのがいいのでしょうか? 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
どうもありがとうございます。