ベストアンサー 複素数について 2008/02/29 20:59 w(γ)=γ+m/γ (mは定数) のときこれの共役な複素数は _ W(γ)=1/γ+mγ になると教科書には書いてあるのですが、 理屈の方がついていかないです。 誰か説明していただけないでしょうか? よろしくお願いします。 みんなの回答 (6) 専門家の回答 質問者が選んだベストアンサー ベストアンサー kumipapa ベストアンサー率55% (246/440) 2008/03/01 11:33 回答No.6 > Re〔γ^2*e^(2iθ) + m-2 / γ^2*e^(2iθ) - m ] > なんですがこれも地道にやれば解けるでしょうか? えっとですね、#1,4,5 さんがおっしゃるとおりで、まずは、自分で手を動かしてみたらどうでしょうか?この問題の計算も数行で終ります。地道も何も、複素数の計算は、こりゃあくまでも計算なので、いつでもどこでも普通に計算するだけです。 まず式ですが、 Re[( γ^2*e^(2iθ) + m-2 )/ ( γ^2*e^(2iθ) - m ) ] ですね。式は括弧をつかって正確に伝えて頂けると助かります。 ここで、e^(2iθ) = cos2θ + i sin2θ を代入して計算するようなことは普通はしないでしょう。e^(2iθ) の共役複素数が e^(-2iθ) であり、e^(2iθ) e^(-2iθ) = 1 であること、e^(2iθ) + e^(-2iθ) = 2cos2θ, e^(2iθ) - e^(-2iθ) = 2i sin2θ であることを利用して計算。 この問題の場合、γ^2*e^(2iθ) - m の共役な複素数は γ^2*e^(-2iθ) - m であることから、 ( γ^2*e^(2iθ) + m-2 )/ ( γ^2*e^(2iθ) - m ) の分母と分子両方に γ^2*e^(-2iθ) - m をかけて分母を実数にしてやってそのまま計算すれば、 Re[( γ^2*e^(2iθ) + m-2 )/ ( γ^2*e^(2iθ) - m )] = ( γ^4 - 2 γ^2 cos2θ -m (m-2) ) / ( γ^4 - 2 m γ^2 cos2θ + m^2) は導けます。式は長ったらしいけど、何も難しい変換は必要なく、数行で終る計算ですから、是非、ご自分で計算してみてください。 計算が合わないようなら、計算過程を補足欄へどうぞ。 質問者 お礼 2008/03/01 12:39 仰られたとおりに計算すれば、求めたかった形に変形できました。 ありがとうございます。 e^(2iθ) + e^(-2iθ) = 2cos2θ e^(2iθ) - e^(-2iθ) = 2i sin2θ e^(2iθ) e^(-2iθ) = 1 を使うって考え方を知らなかったので、それを使えば #6さんがおっしゃられた通りにすんなり求める形にできました。 ありがとうございました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (5) info22 ベストアンサー率55% (2225/4034) 2008/03/01 04:06 回答No.5 #1、#4です。回答者にはそれぞれの回答に対して補足をして下さい。回答者は自分の回答に対する補足質問するのが建前です。他の回答者の補足は、質問者さんがどこまで取り組んでいるか、どこまで分かっているかの参考にするだけです。まとめて、一箇所に補足するだけでは不十分です。回答者ごとに、それぞれの回答に応えて補足をして下さい。ある回答者の補足に書かれた補足質問が原則その回答者への補足であって他の回答者は回答しない方が普通です。一人の回答の補足質問が全ての回答者へのまとめての質問では回答者に失礼にあたります。注意して下さい。 A#3の補足質問が本来、独立した質問として質問しなおすのが筋です。 質問事態がはっきりしません。 解くとは何をする事でしょうか? 方程式でも解くのですか。あいまいな質問はしてはだめです。 単にRe{ }の計算するする事だけですか? そうならそう書くべきです。 Re(Z)なら、 Re(Z)=(Z + Z^*)/2 の計算をするだけです。 理解ができなければ、具体的なγを与えて計算してみてください。 質問する場合は、ます質問者が解答を書いて、分からない箇所だけ質問するようにして下さい。 質問者 お礼 2008/03/01 10:41 本当に失礼なことばかりして申し訳ないです。今回教えて頂いた質問のマナーや、ルールは今後守りますので今回は申し訳ありませんがご容赦ください。 解くとは何をする事でしょうか? >計算することなんですが、Reってものを検索してみたんですが Realってことくらいしか調べられなくてどんな手順を踏めば計算 できるのかわからないです。 Re(Z)=(Z + Z^*)/2のZ^*の部分ですがすみませんがわかりません。 ここの*は伏字ってことですか? 質問者 補足 2008/03/01 10:45 すみませんZ^*)は共役な複素数なんですよね。 調べたら出てきました。簡単な数字でやってみました。 Re(1+2i)=[(1+2i)+(1-2i)]/2=1 でいいんですよね。 (書き忘れていました。mは実数です。) Re〔(γ^2*e^(2iθ) + m-2) / (γ^2*e^(2iθ) - m) ] は代入で解けるのでしょうか?試してみたのですが、 方針がわかんなくなりました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 info22 ベストアンサー率55% (2225/4034) 2008/03/01 01:04 回答No.4 #1です。 僕が言った通り教科書の式は |γ|=1(あるいは|γ|^2=1) という条件無しでは成立しませんよ。 #3さんも同じことを言っておられます。 #2さんの方法で計算していっても、質問の式は成立しません。 にもかかわらず 質問者さんは、A#2の補足で > #2さんのおっしゃったとおりに解けば、一応成り立つことは、 > 確認できました。ありがとうございます。 と書かれています。 本当にチャンと計算して見えるなら成り立たないことが分かるはずです。 なぜ成り立たないか、については#3さんが回答されている通りですし、 僕が書いたγの具体的な例で計算してみても分かるはずです。 僕の提示した具体的なγに対して実際に計算して見ましたか? それも計算しないで、教科書の式が無条件で成立すると思い込んでおられるようです。 成り立たない式をどうして成り立つ事を確認したと言われるか、 分かりません。多分まともに計算しておられないと推察します。 #3さんの回答の補足で追加質問されましたが、最初の質問もいい加減にされ正しい理解をされていない状況では、追加質問をしてもまともな回答をしたとしても、あなたの理解の範囲を超えるでしょう。 もっと、複素数の基礎から、復習しなおされることを強くお勧めします。 質問者 お礼 2008/03/01 01:36 #1さん、続けての回答ありがとうございます。 自分が始めてみたときには、すでに#3さんまで回答していただいていたので、(回答の時間を見ていただければ確認できるようですが)#3さん、#2さん、#1さんの順に参考にさせて頂きました。この問題は、もともと単位円を写像するときにでてきたので、|r|=1は確実のようです。ですから#3さんの回答で納得してしまったので、#2さんの回答は流し読みしていました。申し訳ありません。本当に何度も何度もすみませんが、#3さんのお礼に書かせていただいた質問についての参考になるホームページでもなんでもよいので教えていただければ幸いです。よろしくお願いします。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 kumipapa ベストアンサー率55% (246/440) 2008/02/29 23:44 回答No.3 #1 さんの言われるとおりで、眺めていて分からなければ手を動かしてみることが大切だと思います。具体的な数値で試してみるってことです。すると、|γ|^2 = 1 という条件がなければ駄目だということも分かるでしょう。また、|γ| = 1 ならば、γ と 1/γ が共役な関係になることも分かるでしょう。この γ と 1/γ の関係が肝要なことなのだと思います。 当然ですが、γ = x + iy とおいて計算しても、 γ + m/γ と 1/γ + mγ が共役になることは示せるはずはありません。 複素数 z と共役な複素数を z* と書くことにします。 z (z*) = |z|^2 は OK ですか?これより、|z|≠0 ならば z* = |z|^2 (1/z) ・・・ (1) (1/z) = z* /|z|^2 ・・・ (2) が成り立ちます。また、z1, z2 を複素数とし、α, βを実数とすると、α z1 + β z2 と共役な複素数 (α z1 + β z2)* は (α z1 + β z2)* = α z1* + β z2* ・・・ (3) です。当たり前のような話ですが、2つの複素数の和の共役複素数は、それぞれの共役複素数の和。 これらのことは、それこそ、z = x + iy, z1 = x1 + iy1, z2 = x2 + iy2 とでもおいて、ご自分で確認してみてください。 さて、(1)、(2)、(3)を使って、γ + m / γ と共役な複素数 (γ + m / γ)* を考えてみましょう。 (γ + m / γ)* = (γ + m γ* / |γ|^2)* = γ* + m (γ*)* / |γ|^2 ((γ*)* = γ より) = γ* + m γ / |γ|^2 = |γ|^2 (1/γ) + m γ / |γ|^2 よって、|γ|^2 = 1 のとき、 (γ + m / γ)* = (1/γ) + m γ さて、こんなふうにごちゃごちゃ示して、何となくでも分かりますか? 記号で遊ぶより、やはり具体的な数字で計算してみる方が実感できるかも知れませんね。 質問者 お礼 2008/03/01 00:05 回答ありがとうございます。 #3さん、#2さんの意見を参考にして計算してみました。 教科書では、一行で書いてあったもので、なんらかの変換があると 思っていたのですが、このように地道に計算するしかないようですね。 取りあえず、ここまでは、分かったのですが、ここを地道に解くとなると、自分が結局求めたいものは、この Re〔γ^2*e^(2iθ) + m-2 / γ^2*e^(2iθ) - m ] なんですがこれも地道にやれば解けるでしょうか? ちなみに回答では、 ( γ^4 - 2*γ^2*cos2θ + 2m - m^2 ) / ( γ^4 - 2*m*γ^2*cos2θ + m^2) になっています。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 sanori ベストアンサー率48% (5664/11798) 2008/02/29 21:25 回答No.2 こんばんは。 こういう共役複素数を求める問題は、地道にやるしかない場合が多いです。 実数x,y を用いて、 γ = x + iy と置けば、 w(γ) = γ + m/γ = x + iy + m/(x + iy) = x + iy + m(x - iy)/{ax^2 + by^2} = x + iy + m(x - iy)/|γ|^2 = x(|γ|^2 + m)/|γ|^2 + iy(|γ|^2 + m)/|γ|^2 これの共役複素数は、虚部の符号を反転したものなので、 x(|γ|^2 + m)/|γ|^2 - iy(|γ|^2 + m)/|γ|^2 です。 これが、 _ W(γ)=1/γ+mγ についても、γ = x + iy として計算した結果と一致することを確認しましょう。 質問者 お礼 2008/03/01 00:08 回答ありがとうございます。 #2さんのおっしゃったとおりに解けば、一応成り立つことは、 確認できました。ありがとうございます。 一応題目では、解き方を教えてでしたが、 自分が考えてた以上に複雑であったので 質問を続けさせていただきます。 申し訳ありません。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 info22 ベストアンサー率55% (2225/4034) 2008/02/29 21:16 回答No.1 |γ|=1という条件がついていませんか? >理屈がついていかないなら 所詮、複素文字変数で扱う限りどんな説明をしてもあなたには理解できませんし、理解させる説明ができません。 分からない時は 一般論の文字で考えるのではなく、具体的な複素定数で考えて見てください。 例えば γ=1+i2 で成り立つか確認してみてください 次に|γ|=1である γ=(1+i)/√2 や γ=(3+4i)/5 で確認して見てください。 そうすれば理解できるようになるでしょう。 質問者 補足 2008/03/01 00:14 回答ありがとうございます。 複素定数で当てはめる方法でできました。 よろしければ、#3さんのお礼に書いてある問いの ヒントに回答してくだされば、幸いです。 よろしくお願いします。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 複素数の問題 [問] eが複素数の場合、次を解け。 e + 6E = 7 (E はeの複素共役である。) 課題にこちらの問題があるのですが、質問内容・解き方がいまいちよくわかりません。(教科書に複素共役が載っておらず、ネットでも調べてみたのですがいまいちよく分らなかったもので。。。) もしどなたか分る方がいらっしゃいましたらぜひ解き方を教えてください。 複素数の共役複素数を使った絶対値の導出について 複素数の共役複素数を使った絶対値の導出について z/wの複素数aとbが○で表されると思うのですが、これを用いて絶対値を求める際に分母が(c^2+d^2)^2になるのはなぜでしょうか? (c^2+d^2)^4になる気がするのですが、、 複素数 複素数z=35/(1-3i)^2と共役な複素数をyとするとき、 zy=[] である。 この問題なのですが、問題を理解できませんでした。 どうしろって言ってるのでしょうか。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 共役複素数について ものすごく初歩的な質問ですいません。 a-biとa+biは共役複素数だったら、二次方程式の判別式がD<0のとき、出てくる二つの虚数解は、必ず共役複素数なんでしょうか? 複素数計算の問題です。 複素数計算の問題です。 複素数の問題です。 (1) A=[ 1 1 1 1 ; 1 w w^2 w^3 ; 1 w^2 1 w^2 ; 1 w^3 w^2 w ] (4×4の行列です)のすべての成分を複素数 a + i b の形で表しなさい。 ただし、w = e ^ ( - 2 π i k / n ) . k = 0 , 1 ,…, n - 1とする。 (2) (1)の A のすべての成分を、その共役複素数で置き換えた行列を B とする。 B を書き下しなさい。 この二問の解き方と答えをどなたか教えてください! わかる方、よろしくお願いします!m(_ _)m 共役な複素数について こんにちは。 高1のflankです。 係数が実数である高次方程式が 虚数解a+biを解にもつならば、それと共役な複素数である a-biもこの方程式の解である。 と教科書に書いてあったのですが、 なぜこのように言えるのでしょうか・・・。 よろしくお願いします。 共役複素数関数。。。 量子論などで使われている共役複素数関数(φ*)はなんなのか教えてください。 たとえば、∫lφl^2dx=∫φ^*×φdx=1 (φ^*:共役複素数関数)・・・0<x<Lまでの電子の存在確率は1。 これ(φ^*:共役複素数関数)はどのような関数で何故使われているのですか? 複素数の大きさの3乗について こんにちは 複素数の2乗は元々の複素数と共役なものをかけますが、3乗はどうすれば良いのでしょう? 普通に2乗かける1乗と考えれば良いのでしょうか? お答えお願いします α,βは複素数で、αの絶対値は1、 α,βは複素数で、αの絶対値は1、 αβ'=βのとき、 z+αz'+β=0 を満たすzが存在することを示せ。 (β',z'は共役複素数) とりあえず、z+αz'+βと共役なz'+α'z+βとの 積(z+αz'+β)(z'+α'z+β)これを考えて、これが 0になるような、zがあるといえばいいのかと思いましたが、 展開しただけで計算が進みません。この考え方でいいのか、 それとも別の考え方のほうがよいのか。よろしくお願いします。 複素数での共役複素数の計算方法について 電気について勉強をしており、使用しているテキストの内容で 問題の解答にある式に変形出来ませんでした。 ご指導の程、よろしくお願いします。 テキストの解答 15 * jX / 15 + jX = 15X^2 + j15^2 / 15^2 + X^2 分母は共役複素数で (15 + jX)*(15 - jX) となり AC - BD+j (AD + BC) にて 15^2 + X^2 なると思うのですが、 分子に共役複素数の(15 - jX)を持って行ってからの 15 * jX ( 15 - jX ) の計算をどのようにすればいいかわからないです。 そもそも共役複素数を使うことが間違いなのでしょうか? よろしくお願いします。 複素数 次の問題の、18(1)(2)と19を教えていただきたいです。 18の(1)は、1-sinθ+icosθなら分かるのですが、この問題だと分かりません。 19は、実数ということはzとzの共役複素数が等しくなることを使うのだと思いますが、どう使えば良いか分かりません。 お願いします 複素数について・・・ Z=a+biとそれに共役な複素数z-=a-biについてですが、 これは「Zバー」と読むとよいのですか?簡単な質問かもしれませんが、よろしくお願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 複素数平面と極形式 198 複素数αが|α|=1をみたすとき、 |α-(1+i)|=|1-αバー(1+i)| が成り立つことを示。ただし、αバーはαと共役な複素数を表す。 これを解いてください。 お願いします。 複素共役 共役複素数 複素共役 共役複素数 複素共役の性質としてよくわからない性質があったので 質問させて頂きます。 複素数をz、zに対する複素共役をz^-で表します。 (z^-1)=(z^-)/(|z|^2) これは、複素数の逆元を表していると思います。 この、(z^-1)とは(1/z)と同じことなのですか? また、(z^-1)=(z^-)/(|z|^2) となる理由を知りたいのですが、 証明の仕方を教えて頂けないでしょうか? 以上、よろしくお願い致します。 複素数の絶対値の性質について なぜ、複素数zと共役な複素数zをかけた場合、絶対値zの2乗になるのでしょうか? また、複素数に絶対値がつくというのは、どういうことを意味しているのか教えてください。 よろしくお願いします。 複素数と方程式 複素数1+iを解の一つとする実数係数の三次方程式xの三乗+axの二乗+bx+c=0(すいません。式をどの様に打てばよいのか分からず、大変見づらくなってしまいました。axの二乗は、xだけが二乗されています)について、 ①この方程式の実数解をaで表せ。 ②この方程式と二次方程式xの二乗-bx+3=0がただ一つの解を共有するとき、定数a、b、cの値を求めよ。 という問題です。 ①から解けません。xに1+iと、共役な複素数1-iを代入したりしてみたのですが、解けません。 教えてください。 複素数平面の問題で困っています. 複素数zについての一次方程式 az+bα+c=0 (a,b,c∈C)(αはzの共役複素数) は複素平面において,zを満たす点が 直線を表すか,存在しないか,または1点であることを示せ. 上の問題なのですが, z=x+iy などを代入したり色々してみたのですが手が出ません. 方針だけでもいいのでお願いします.m(、、)m 複素関数(初学者、独学) z*はzに共役な複素数を表します。z,wは複素数、kは実定数です。 z*-z=2kiww*で両辺を2ki(≠0)で割ってとあるのですが、なぜ、0ではないとわざわざ断っているのですか?複素関数w=1/zではz=0のときもwは無限遠点となって、定義されますよね? 複素数の図示について iz > 0 という不等式をを満たす複素数zの範囲を図示せよという問題なのですが、次のように解いてみました。 解) w=izとおき、w=-y+ix (ただし、z=x+iy , x,y∈R)。 w=iz>0より、両辺にwの共役の複素数をかけて、 |w|^2 > 0 となり、|x^2 +y^2| > 0。これより、条件を満たす 複素数zの範囲は、原点を除く全複素平面。 以上のように考えたのですが、これで正しいのでしょうか?条件の不等式が何を意味しているのか、いまいちピンとこないので質問させていただきました。 お手数ですが、どなたかアドバイスをいただけないでしょうか? よろしくお願いします。 対になっている複素数の掛け算について 共役複素数は特別の対なのだろうと思いますが、 a+bi とb+aiとをかけると、(a^2+b^2)iとなって、改めて共役複素数の掛け算の結果である a^2-b^2と比べてみると、三角関数の指数関数表示などと関係があるのかなと思うのですが・・・このような対には特別な名前がついているのでしょうか? 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
仰られたとおりに計算すれば、求めたかった形に変形できました。 ありがとうございます。 e^(2iθ) + e^(-2iθ) = 2cos2θ e^(2iθ) - e^(-2iθ) = 2i sin2θ e^(2iθ) e^(-2iθ) = 1 を使うって考え方を知らなかったので、それを使えば #6さんがおっしゃられた通りにすんなり求める形にできました。 ありがとうございました。