偏角の原理の証明過程で解らないところを教えてください。
関数f(z)は単一閉曲線Cでかこまれた閉領域Dで有理型であり、C上では正則であって零点をもたないとする。いまf(z)はCの内部に極α1,…,αm,零点β1,…,βnをもつとし、s1,…,smをα1,…,αmの位数、t1,…,tnをβ1,…,βnの位数とするとき、偏角の原理
(1/2πi)∫_cf’(z)dz/f(z)=(1/2π)∫_cdargf(z)=Σ[k;1→n]t_k-Σ[j;1→m]s_j での証明過程です。
logf(z)は多価関数であるが、その一つの分枝を考えるとき dlogf(z)/dz=f’(z)/f(z) となることから
(1/2πi)∫_cf’(z)dz/f(z)=(1/2πi)∫_cdlogf(z)
logf(z)=log|f(z)|+iargf(z)においてlog|f(z)|はzがC上を一周しても変わらないので、logf(z)の変化量はiargf(z)の変化量に等しい。これより最初の等式
(1/2πi)∫_cf(z)dz/f(z)=(1/2π)∫_cdargf(z) がでる。以下…とあるのですが、疑問点は、「log|f(z)|はzがC上を一周しても変わらない」の箇所です。
例えば複素平面上で0を原点とし半径1の単一閉曲線C上をzが一周するのなら|f(z)|が変わらないのは解りますが、より一般的な正円でない単一閉曲線C上をzが一周してもlog|f(z)|は変わらないのでしょうか?なぜなのか教えてください。
それとも証明文はlogf(z)の各分枝は定数の差しかないから、logf(z)の変化量は定数分の差すなわちiargf(z)の変化量に等しい。といっているのでしょうか?
質問が解りづらい文章ですみませんが、宜しくお願いします。