• ベストアンサー

因数分解  a(bII-cII)+b(cII-aII)+c(aII-bII)

「基礎からのシグマベスト 高校 これでわかる数学I+A」という本をやっています。 この本は、精神科医で受験アドバイザーでもある和田秀樹さんが推薦してらっしゃる本で、非常に丁寧で良書といわれます。 しかし、最初の因数分解でもうつまづいてしまっています…。 a(bII-cII)+b(cII-aII)+c(aII-bII)   「II」=2乗     解法ルール (1)次数の低い文字について整理する (2)どれも同じ次数のときは、1つの文字について整理    ↓解説 どの文字についても2次。aについて整理すると =(c-b)aII+(bII-cII)a+(bcII-bIIc) =(c-b)aII+(b+c)(b-c)a+bc(c-b) =(c-b){aII-(b+c)a+bc} ←たすきがけを使う =(c-b)(a-b)(a-c) =(a-b)(b-c)(c-a)…答 解説の2行目の式からしてもう意味不明です……。まず最初の(c-b)aIIというのがどっから来てるのかさっぱりです。しかもこれは例題です。これが解からないと練習問題なんか全部解かりません。 60分以上考えても解からず断念しました…。最近では「数学は5分考えて解からなければ答えを見る。それでも解からなければ、すぐ人に聞け。」と言われます。 また、( )aの様に、( )の後ろに文字が来るというのは、この本では何も解説していませんが、どういうケースなんでしょう? ( )の前に文字が来るのとどう違うのですか? 又はこの問題が解からなくても先に進んで問題無いでしょうか? 宜しくお願い致します。

質問者が選んだベストアンサー

  • ベストアンサー
  • kkkk2222
  • ベストアンサー率42% (187/437)
回答No.8

 最初の式が書かれていないので、 推測で書きます   a(bII-cII)+b(cII-aII)+c(aII-bII)       aについて整理するので、      後の2項の括弧をはずします。 =a(bII-cII)+[bcII-baII+caII-cbII]   2次の項は、-baII+caII   定数項は、bcII-cbII ですから、 =a(bII-cII)+(-baII+caII)+(bcII-cbII)    (-baII+caII)=(c-b)aII 、で =a(bII-cII)+(c-b)aII+(bcII-cbII) となります。    次数の高い順に並べ替えて、 >> =(c-b)aII+(bII-cII)a+(bcII-cbII)    aを後ろにもって来るののは、    係数が数のときに、    2aII+3a+4 と書くのに準じています。    此れは出来るだけ早く慣れるのが賢明です。     (bII-cII)=(b+c)(b-c)、     (bcII-cbII)=bc(c-b)、で >> =(c-b)aII+(b+c)(b-c)a+bc(c-b)    共通因数(c-b)が見え易くするために、     (b-c)=-(c-b) として、   =(c-b)aIIー(b+c)(c-b)a+bc(c-b)    共通因数(c-b)を括り出して、 >> =(c-b){aII-(b+c)a+bc}        aIIの係数は1だから、      タスキガケというより、      足して-(b+c)、掛けてbc      となる2数(2文字)は、-b と ーc だから、   =(c-b){ (a-b)(a-c) } >> =(c-b)(a-b)(a-c)    形が悪いので、a、b、c が回るように、    入れ替えます。    此れを輪環の順と言います。    (a-b)は、此のままです。    (c-b)=-(b-c)    (a-c)=-(c-a) だから、   =[-(b-c)](a-b)[-(c-a) ]     2つのマイナスが相殺して、   =(b-c)(a-b)(c-a)      (a-b)を先頭に持って行き、 >> =(a-b)(b-c)(c-a)…答 >> この問題が解からなくても先に進んで・・・。 It depends .

noname#78932
質問者

お礼

ありがとうございます。 a(bII-cII)+b(cII-aII)+c(aII-bII) ←最初の式です。 >共通因数(c-b)が見え易くするために、(b-c)=-(c-b) として、 =(c-b)aIIー(b+c)(c-b)a+bc(c-b) この部分解からなくて困ってました。たすきがけの部分も解かりました。 丁寧にありがとうございます。

すると、全ての回答が全文表示されます。

その他の回答 (7)

  • okormazd
  • ベストアンサー率50% (1224/2412)
回答No.7

「II」=2乗 として式を表すことができるあなたなら因数分解など簡単にできるでしょう。 a( ) も、 ( )a も、aと( )の中のものとかけるという意味で同じです。 私は、「^2」=2乗 としましょう。 a(b^2-c^2) + b(c^2-a^2) + c(a^2-b^2) ( )の中とかけて( )をはずすと、 = ab^2-ac^2 + bc^2-ba^2 + ca^2-cb^2 aで整理しやすいようにかける順番をとょっと変える。(3×5 も 5×3 も同じ、a^2はひとかたまりなのでaと^2に分けることはできないよ) = ab^2-ac^2 + bc^2-a^2b + a^2c-cb^2 これで、a のついているものを先に書くと、(^2のついているものを優先しよう) = a^2c-a^2b + ab^2-ac^2 + bc^2-cb^2 となって、はじめの2つには両方とも a^2 が かかっていて、3番目と4番目には両方とも a が かかっているので、これを( )を使ってあらわせば、 = a^2(c-b) + a(b^2-c^2) + bc^2-b^2c 2行目の意味不明の式だぞ。 a^2は、( )の前でも後でも同じだからね。 というわけだ。

noname#78932
質問者

お礼

ありがとうございます。 順番を整理するですか、難しく考えすぎて基本的な事を見落としていたかもしれません…。 これなら解けそうです。

すると、全ての回答が全文表示されます。
  • info22
  • ベストアンサー率55% (2225/4034)
回答No.6

>この本は、精神科医で受験アドバイザーでもある和田秀樹さんが推薦してらっしゃる本で、非常に丁寧で良書といわれます。 幾ら良書といっても、それを学ぶ人が理解できなければ、その人にとって、レベルが高すぎれば、今の段階では良書と言えないでしょう。 60分以上考えても解からず断念する問題が沢山現れるようならあなたにとって良書とは言えませんね。 大学の教科書が幾ら名著であっても、中学生に与えて読ませて理解できなければ、中学生にとっては役に立たない価値のない書と言えます。 あなたは独力で何とか理解できて学習が進まなければ、良書と言えないでしょうね。それを理解できる人にとっては良書でしょう。その良書がレベルが低すぎる人にとっては、役に立たないつまらない本と写るでしょう。 さて、質問ですが >解説の2行目の式からしてもう意味不明です 、 2行目は、解法ルール(2)を適用しただけです。 a,b,cについてどれも2次だから、その中のaについて整理したに過ぎません。つまり、a以外は単なる定数とみてaの2次式として整理します。 ○a^2+□a+△ ← 2乗は「^2」で表すのが一般的です。 ○□△には、定数のb,cの入った式になります。 >まず最初の(c-b)aIIというのがどっから来てるのか ○の係数は、a^2の項だけを集めた時の定数の項の係数で 「b a^2」と「a^2 c」の2項しかありません。その2項をa^2で括れば○の係数(c-b)になります。 >( )aの様に、( )の後ろに文字が来るというのは、この本では何も解説していませんが、どういうケースなんでしょう? ( )の前に文字が来るのとどう違うのですか? 2次式の整理の形式が降べきの順の場合は次の形に決まっています。 ○a^2+□a+△ aの一次の項の係数の□はaの前に書く、つまり、係数の□の後ろにaを書くのが常識だと思いますが、違いますか? >どういうケースなんでしょう? ( )つまり□は、多項式の変数aの係数の1つですから 変数の前に係数を書くのが、常識だと思いますが、 >( )の前に文字が来るのとどう違うのですか? 整理したaについての多項式においては、aの係数である( )の後ろにaを書くのが常識だと思いませんか? 逆にすれば、へそ曲がりとしか、思われませんね。 こういう一般的に誰もが常識的なことと考えられないようなら、幾ら良書でも、あちらこちらで、何時間考えても、良書を読破できないでしょう。 何度も質問すると誰も応えてくれなくなるかと思いますよ。 多くの人にとって常識的なことが、あなたにとって常識的でなく、それが故に、解説が何時間かけても理解できない事になるのだと思いますが、どうしたら、克服できると思いますか? このことは、数学の本を読む以前の問題のような気がしますが、いかがでしょうか?

noname#78932
質問者

お礼

ありがとうございます。 「常識がわからない」…ですか。そういう人が周りにいるんでしょうか。 私はただ意味が知りたかったんです。 「常識だと思いませんか?」ですが、本を読み始めたばかりなので何とも言えませんが、確かに常識を無視するのは、少なくとも数学に関しては致命傷ですね。

すると、全ての回答が全文表示されます。
回答No.5

ご質問の内容は、中学数学の範囲の問題です。 このままだと、同じような疑問が度々出てくるのではないでしょうか。 中学数学を復習されることをお勧めします。 といっても中学数学も基礎から受験レベルまで幅が広いので、 基礎的なことだけでも、復習してみてはいかがでしょうか。 aの2乗は掲示板などでは、一般的にa^2と表記されます。 1行目から2行目を詳しく書くと、 a(b^2-c^2)+b(c^2-a^2)+c(a^2-b^2) = ab^2 - ac^2 + bc^2 - ba^2 + ca^2 - cb^2 (展開する) = ca^2 - ba^2 + ab^2 - ac^2 + bc^2 - cb^2 (並び替える) = (c - b)a^2 + ab^2 - ac^2 + bc^2 - cb^2 (a^2を含む項を因数分解) = (c - b)a^2 + a(b^2 - c^2) + bc^2 - cb^2 (aを含む項を因数分解) となります。 a(b^2 - c^2)と(b^2 - c^2)aは同じ意味です。同様に、cb^2はb^2cと同じです。また、文字については()の前に書いても後ろに書いても全く同じですが、数字については、普通前に書きます。つまり、2(a-b)とは書いても、(a-b)2とは書きません。これは慣習的なことです。 このように一つの文字(この場合a)について上のような操作をすることを、「aについて整理する」等と言います。 これは解説等を読むときのポイントですが、ある行から次の行になるときに「どこが変わったか」を考えるようにすると、理解しやすいことが多いです。

noname#78932
質問者

お礼

ありがとうございます。 この本は中学の基礎から理解し、高校の基礎まで教えるという本なんです。 文字の場合()の後ろに書くんですね。

すると、全ての回答が全文表示されます。
  • sanori
  • ベストアンサー率48% (5664/11798)
回答No.4

こんばんは。 えーと、まず、 「aの2乗」は、a^2 と書けばよいですよ。 元の式 a(b^2-c^2)+b(c^2-a^2)+c(a^2-b^2) >>>まず最初の(c-b)aIIというのがどっから来てるのかさっぱりです aを主役にした式に直す、という方針で解きます。 元の式で、a^2 が2箇所ありますよね。 b(c^2-a^2)の中の a^2 c(a^2-b^2)の中の a^2 です。 a^2の係数は、-bとcの2個であることはわかりますか? だから  (-b+c)a^2 (=(c-b)a^2) ・・・(あ) となります。 これで、a^2 の項が完成です。 同様に、元の式で aの1乗が1箇所だけありますね。 a(b^2-c^2)のaです。 aの項は、(b^2-c^2)a です。 ・・・(い) あとは、aと関係がないのが、 b(c^2-a^2) の中の bc^2 c(a^2-b^2) の中の -b^2c 合わせて bc^2 - b^2c (=bc(c-b)) ・・・(う) です。 a(b^2-c^2)+b(c^2-a^2)+c(a^2-b^2) = (あ)+(い)+(う)  = (c-b)a^2 + (b^2-c^2)a + bc(c-b) ・・・(え) ここで、乗法公式により(b^2--c^2)の部分は、 (b^2--c^2)=(b-c)(b+c)   = -(c-b)(b+c) よって、(え)の続きは、  = (c-b)a^2 - (c-b)(b+c)a + bc(c-b) 共通因数(c-b)でくくって  = (c-b){a^2 - (b+c)a + bc} ここで、 a^2 - (b+c)a + bc は、基本的な因数分解で、 a^2 - (b+c)a + bc = (a-b)(a-c) よって、つづきは、  = (c-b)(a-b)(a-c)  = {-(b-c)}(a-b){-(c-a}}  = (a-b)(b-c)(c-a) >>>また、( )aの様に、( )の後ろに文字が来るというのは、この本では何も解説していませんが、どういうケースなんでしょう?  上述したように、aを主人公にして、a^2 の項、aの項、残りの項 の3つに整理するということです。 >>> この問題が解からなくても先に進んで問題無いでしょうか? この問題は、因数分解の基本要素が散りばめられているよい問題ですから、ぜひマスターしてください。 ・ある文字について、乗数ごとに項をまとめてみる。 ・(x-a)(x-b)⇔ x^2 -(a+b)x + ab ・(x+a)(x-a)⇔ x^2 -a^2

noname#78932
質問者

お礼

ありがとうございます。 良い問題ならば是非マスターします。 もう少しで解けそうです。

すると、全ての回答が全文表示されます。
  • sfdgwet4
  • ベストアンサー率28% (12/42)
回答No.3

a(b^2-c^2)+b(c^2-a^2)+c(a^2-b^2)            ↓ ab^2-ac^2+bc^2-ba^2+ca^2-cb^2 x^2=Xの二乗 これでもうわかりますね。

noname#78932
質問者

お礼

ありがとうございます。

すると、全ての回答が全文表示されます。
  • tkssh
  • ベストアンサー率17% (6/35)
回答No.2

a(bII-cII)+b(cII-aII)+c(aII-bII) まずこれを展開します  a(bII-cII)+b(cII-aII)+c(aII-bII) =abII-acII+bcII-abII+acII-bcII まず↑の展開した中からacIIと-abIIを持ってきてaIIでくくります。 aII(c-b)になりました。このaII(c-b)は(c-b)aIIといっしょです。 aII×(c-b)も(c-b)×aIIなので答えは変わりません。 まぁ簡単に5×3と3×5は一緒の答えになるそうゆうことです。 つまり()の後ろにaが来てもそれは()の前にaがあると言うことです。 これをふまえてもう1度やってみてください。 因数分解は基礎です。やってください。

noname#78932
質問者

お礼

ありがとうございます。 見落としていたかもしれません。もう一度やってみます。

すると、全ての回答が全文表示されます。
  • kei00z2
  • ベストアンサー率19% (56/284)
回答No.1

取敢えず全部展開してaの次数で並び替えてください。 そしてaII、a、とカッコでくくっていけば2行目の状態になります。

noname#78932
質問者

お礼

ありがとうございます。 展開はしてみましたが、よくわからず…… もう一度試してみます。

すると、全ての回答が全文表示されます。

関連するQ&A