ベストアンサー 微分のh 2006/07/05 11:58 微分の極限のところでhという記号が出てきますが、これは何を表しているのですか? みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー proto ベストアンサー率47% (366/775) 2006/07/05 12:06 回答No.1 f'(x) = lim[h→0]{f(x+h)-f(x)}/h のhのことでしたら 微分において傾きを考えるときの幅です。 最終的に0への極限をとるので微小幅のことです。 参考URLを見てもらえばわかりやすいと思いますが。 hが0に限りなく近くなったときにf'(x)はその点で接する接線の傾き、といったイメージです。 参考URL: http://w3e.kanazawa-it.ac.jp/math/category/bibun/heikin-henka-ritu.html 質問者 お礼 2006/07/05 12:16 ありがとうございました。理解できました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 微分で混乱 数IIIの微分において混乱しています。 f(x)=|X|が微分可能かどうかについて 私は極限lim(X→0)|X|=0(左右とも)だから微分可能なのではないか、 と考えたのですが、他のサイトで質問したところ、 微分可能かどうかを判定する極限は、これではなく、 lim(h→0){(|X+h|-|X|)/h}です。この極限は、右極限が1,左極限が-1ゆえ値を持ちません。 よって、微分可能ではないわけです。 という回答を頂きました。 私はこの2つの式の違いが分からないのです。 頭弱いので分かりやすくどうか教えてください。 >< 微分係数について 微分係数について質問です。微分係数とは平均変化率の極限をとったもの即ち、lim(h→0)f(x+h)-f(x)/hですよね?例えばf(x)=x^2の平均変化率は2x+hとなりlim(h→0)にすると2xになります。但しこれは極限値であり平均変化率は2xに限りなくいくらでも近づくことができますが、2xそのものには決してなりえませんよね?それなのに平均変化率を2x(極限値)そのものにして良いのでしょうか?直感的には必ず、微小な誤差hがつきまとうと思うのです。 回答よろしくお願いいたします。 微分って? またまたすいません(´・ω・`) 微分と導関数と極限値っていうのはなにかという意味がわかりません(ノд-`) リミットの意味もわからなくてそのしたに、h→0がある意味もわかりません(´・ω・`) いっぱい質問あってごめんなさい(´・_・`)教えてください。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 数3の「eのh乗引く1をでh割った式」 eのh乗から1を引いたものをhで割った式でh→0のとき極限値「1」は、「eのx乗の関数」の微分公式から導けるのは理解することはできます。 上記のことは、教科書で見かける「e」を定義するとき、式「(1+h)のh分の1乗」でh→0の極限値を「e」とする、という公式から導けるのでしょうか。そこんとろを説明した参考書を寡聞してしりません。 ここから導けないとしたら、なんか、「1」を導く上記の微分を利用した公式も循環論のように思えるのですが。 どう理解したものでしょうか。 微分積分の問題の解き方を教えてください。 微分積分の問題の解き方を教えてください。 1、lim log10(1+h)/h 極限値 h→0 2、Y=sin^3(X)cos^2(X) 微分 3、Y=√(sinX) 微分 4、Y=X^2(sin2X) 微分 よろしくお願いします。 微分 可能 について 微分係数の定義は、 (1)f´(a)=lim[h→0](f(a+h)-f(a))/h これを変形すると、 lim[h→0](f(a+h)-f(a))=lim[h→0]h・f´(a) よって、lim[h→0]f(a+h)=f(a)となります。 x=a+hとすれば、 (2)lim[x→a]f(x)=f(a) となります。 lim[x→a]f(x)=f(a)はf(x)にaを代入している事と同じになると 思います。 ここで、問題です。 f(x)=|x|のx=0について微分可能で無い事を示す場合、 (1)式で解くと、 右極限 lim[h→+0](|0+h|-|0|)/h=lim[h→+0]|h|/h=1 左極限 lim[h→-0](|0+h|-|0|)/h h=-tと置くと、t→+0となる。 lim[t→+0](|0-t|-|0|)/-t=lim[t→+0]|t|/-t=-1 となり、lim[h→+0](|0+h|-|0|)/h≠lim[h→-0](|0+h|-|0|)/h なのでf(x)=|x|はx=0について微分可能でない。 (2)式で解くと、 右極限 lim[x→+0]|x|=0 左極限 lim[x→-0]|x|=0 x=-tと置くと、t→+0となる。 lim[t→+0]|-t|=0 よって、lim[x→+0]|x|=lim[x→-0]|x|となり微分可能であると成ってしまいます。 (1)式=(2)式なのに、解が異なってしまうのは何故でしょうか? 微分可能かどうか f(x)=exp(-1/x) :x>0 =0 :x<=0 でx=0で微分可能かどうか調べたいのですが 微分の定義に戻ってロピタルの定理などを使ったのですが できませんでした。 左極限が0なのはわかっています。 右極限がどうしても不定形となってしまいます。 どうすればよいでしょうかよろしくお願いします。 ある関数が微分可能かどうかを調べる問題がわからない 関数 f(x)=|x(x-2)| が x=2 において微分可能であるかどうか調べよ という問題がわかりません。 グラフを描くと微分可能ではないように思うのですが、 (x=2に、右から近づいたときと左から近づいたときの、その点における接線の傾きが等しくないように思える) 計算で確かめることができません。 確かめられないというのは、やり方がわからないという意味です。 おそらく、 lim(h→2+0){ f(2+h)-f(h) / h } lim(h→2-0){ f(2+h)-f(h) / h } の値を求めて比較すればいいのでしょうが、 右側・左側からの極限がよく理解できていないため、どのような操作をしてよいかわかりません。 右側・左側からの極限まで戻ってやり直してみたのですが、いろいろ考えているうちに混乱してしまいました。 どなたかご教示いただけると幸いです。 微分可能の証明 微分可能を示すときに極限計算をしますが、常に右側極限と左側極限を示さなければならないのでしょうか?例えばf(x)=|x|のx=0の点について極限計算しますと右側と左側で明らかに結果は違ってきますから、両方やって微分不可能ということが導き出されますが、f(x)=cosxのx=αにおける微分可能を示せという問題で極限計算しますと両側同じ結果になります。証明問題ですから厳密に書かなければならないと思うのですが、にしても相当な時間とスペースをくいます。 例えば右側だけやって、「同様に左側極限も等しくなる」などと記述してもよいのでしょうか? 微分について 高校2年の者です。 今学校の授業で 微分についてやっています。 そこで分からないことが あります。 数学の先生に聞いても いまいち理解できません でした(^^; 極限値と微分係数は どこが違うんですか? この2つの違いが いまいちわかりません(>_<) 実際に問題を解いて みたんですが、 どちらを求める問題も 問題の式が似ていて (どちらもlimを使う問題) 余計分からなくなりました・・・ ある友人は同じだと 言うのですが、同じなら 名前をわける必要ない ではないですか? どなたか極限値と微分係数について教えてくださると嬉しいですm(__)m 微分 今y=e^(x^3)のxについて微分を微分の定義に従って解こうとしているのですが、極限操作がうまくいきません。 対数微分法などでしか無理なんでしょうか。 微分 可能 について その2 以前、http://okwave.jp/qa5093106.htmlにて質問させて頂きました。 以前の質問内容でなかなかご回答頂けなかったので再度質問させて頂きます。 f(x)=x/|x| x=0において微分可能かどうかという問題についてです。これは、連続の式lim[x→a]f(x)=f(a)より、 lim[x→0]x/|x|となるのですが、x/|x|というのはただ単純に約分することは出来ないのでしょうか? 約分できたとすると、lim[x→0]x/|x|=1となり連続になります。 グラフを書いてみたのですが、どうも連続ではなさそうなので、単純に約分できないと言う事でしょうか? lim[x→+0]x/|x|が不定という前提で続けます。 微分可能であるかどうかを示すために、lim[h→0](f(a+h)-f(a))/hを求めます。 右極限はlim[h→+0](0+h/|0+h|-0/|0|)/hとなり0/|0|不定形が出てきてしまいます・・・ 左極限も同じです。。。 どうやったら微分可能でないことを示せるのでしょうか? 解き方が分からずに悩んでいます・・・ 詳しい方ご回答よろしくお願い致します。 また、グラフを添付致しますが、f(x)=x/|x|のx=0におけるグラフは 表すことは出来ないのでしょうか?添付したグラフは正しいですか? 質問内容を整理します。 ・x/|xは単純に約分できないのか。 ・lim[h→+0](0+h/|0+h|-0/|0|)/hはどのようにとけば良いのか? ・x/|xのx=0における部分はグラフで表現できないのか? ・添付したグラフは正しいか? 以上、よろしくお願い致しますm(__)m 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 数学3 微分の問題です。 数学3、微分の問題です。 lim (t→0 )( t+ 1 )^1/t =e を利用して、 次の極限値を求めよ。 (1)lim (h→0 )( 1+ 2h )^1/h (2)lim (h→0 )(( e^h -1 )/n) 答えは、 (1)e^2 (2)1 です。よろしくお願いします。 h→0を0→hにして微分の逆演算は不可能ですか 微分の説明でx+hでhを0に近づける方法がありますが、これを逆にしてhを0から遠ざけるようにして逆演算はできないのでしょうか。 偏微分とは・・・? 物理化学の課題をしていたら教科書に「偏微分が零になるような・・・」とありました。偏微分とは普通の微分とは違うのでしょうか。あと与えられた式の前に「∂」というのがあったのですがこれはやはり偏微分の記号なのでしょうか。 hをtで微分するには 次の関数h=v0t-1/2gt^2についてhをtで微分せよ。 ただしv0、gは定数とする。 この問題の解法が解りません。 どなたか教えてください。 全微分について 全微分公式は dz=∂z/∂y・dy+∂z/∂x・dx ですが、 全微分可能性は、ε(x,y)/(√dx^2+dy^2)→0 ですよね。 全微分可能性は、ちょうど接平面の対角線の高さとΔzの差を、ΔxとΔyを一辺とする長方形の対角線である(√dx^2+dy^2)で割って極限を取るという形になっています。 そうならば、全微分も、Δz/(√Δx^2+Δy^2)であるべきですよね。それが、なぜ上式になるのかわかりません。 僕にはそれぞれの成分が、接平面のxの変化によるzの増分とy方向の変化によるzの増分を足すと、zの増分になるとしか意味しておらず、 微分の微分係数を求めるつまり、平均変化率の極限値になっていないと思うのですが・・・ 確か、dy/dx=接戦の傾きで、上式では単に成り立つよねとしか言えていないような・・・・ 微分、偏微分記号の読み方?? 私は、常微分 df/dx をディエフ・ディエックスと読んでいますがこれでいいのでしょうか? また、偏微分記号ははどのように読めばいいのでしょうか。 ご教示願います。 微分するとはなんぞや? 微分するってどういうことでしょうか? その際に導関数や極限値などの単語を使うとき その意味も教えてください。あと、教科書見てくださいという 解答はやめてください。教科書は定義っぽくて よくわかりません。さらに限りなく近づけるって どこまで近づけるのかっていうのがわかりません。 数では表せないのでしょうか? 微分(数(3)) 以下のような問題なのですが、全く解き方が分からないのでどなたか教えてください。 c,p,qは定数、関数f(x)はx=cで微分可能な時 次の極限値をc,p,q及びf'(c)などを用いて表せ (1) lim(h→0) f(c+h^2)-f(c) / h (2) lim(h→0) f(c+ph)-f(c+qh) / h 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ありがとうございました。理解できました。