物理の万有引力についての質問です
物理の万有引力の質問です。問2までは解けたのですが、問3から問5まで分からず困っています。どなたか解ける方がいらっしゃいましたら、教えていただきたいです。よろしくお願いします。
〈問題〉
図1のように地上から、質量mの衛星を打ち上げて軌道に乗せることを考える。ただし、地球は点Oを中心とする密度一様な球体とし、地球の半径をR,地球の質量をM、万有引力定数をGとする。また、地球の自転による効果については考慮しない。
問1 地上での重力加速度の大きさをR, M, Gを用いて表しなさい。
mg=GMm/R^2
g=GM/R^2
問2 衛星を地上より鉛直上向きに速さ Voで打ち上げて,地球の中心から 2R の点Aに達した時に速さが0になった。この時の速さVoを求めなさい。
力学的エネルギー保存則より、
1/2mv0^2-GMm/R=0-GMm/2R
1/2mv0^2 =-GMm/2R +GMm/R
=GMm/2R
mv0^2=GMm/R
v0^2=GM/R
v0=√GM/R
問1より、GM=gR^2より、v0=√gR
問3 衛星が点Aに速さ0で達した直後,OAに垂直な方向に速さ VAに加速して、点Aから地球の中心を通る延長線上の OB = 6R となる点Bに到着した。この時の速さVA,及び、点Bに到着した時の速さ VBを求めなさい。
間4 衛星が点Bに達した直後,速さ Vcに加速して地球に対し半径 6Rの等速円運動をさせる。その時の速さ Vcと公転周期Tcを求めなさい。
問5 地球に対し半径 6R の等速円運動をしている衛星の運動エネルギーKを用いて、この衛星がもつ力学的エネルギーを表しなさい。ただし、万有引力による位置エネルギーの基準点は無限遠とする。
お礼
わかりました。ありがとうございます。