• ベストアンサー

正規分布表のzは3.9まで

正規分布表のzは、3.9までしかないのですが、 これはどうしてでしょうか? zが3.9以上になってしまった場合は、どう処理すればよいのでしょうか? zが3.9以上になってしまう場合は、正規分布に該当しないのでしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
  • Zz_zZ
  • ベストアンサー率44% (756/1695)
回答No.4

>>4.0以上も、0.0000と考えてよいでしょうか (小数点以下5桁を四捨五入するので)その通りです。   N(0,1)     /⌒\          / │ \     全体の面積=1(0~±∞)         /  │  \         /   ├←─→┤   面積(S)=0.3413        │   │σ= 1 │    (Z=0~1)        │   │   │        /    │    |   面積(s) =(0.5 - 0.3413)       /    │ (S) │\   (Z=1~∞)      /     │   │ \  ────      │   │  ───── /          │   ↓ (s)     \ ───────────┬───┬───────── -∞ ←        0    Z=1    → +∞ の、Z に対して右側部分を表した Table も多く見掛けます。  規格(2σとか3σ)から外れる場合(確率)を検証する時や、 有意水準 5% での検定など、t分布表(t検定に用いる)や、 χ^2 分布表(カイ自乗(2乗)検定に用いる)などは、t値や χ^2 値の右側部分(s)の面積が表となっていますので、それ に習ったもの(混乱を避けるため)と思います。  

gost
質問者

お礼

大変詳しい御返答有り難うございました。 以前も似たような質問にも御答え下さり、大変助かりました。 前回の返答は、OKWebに消されてしまい、しかも消される前に連絡を下さればよいのに、消してから連絡を受けるという非常に困った事態となってしまいました。 今度は、消されずにほっとしています。 重ね重ね有り難うございました。

その他の回答 (3)

  • Zz_zZ
  • ベストアンサー率44% (756/1695)
回答No.3

            エクセルでの正規分布表の作表方法 ---------------------------------------------------------------------------------    A      B            C         D  …  K  ┏━━┳━━━━━━━━━━━━┯━━━━━━━━━━━━┯━━━┯━┯━━┓ 1┃ Z ┃    0.00      │    0.01      │ 0.02 │…│0.09┃  ┣━━╋━━━━━━━━━━━━┿━━━━━━━━━━━━┿━━━┿━┿━━┫ 2┃0.0 ┃   0.0000      │=NORMSDIST($A2+C$1)-0.5 │ … │…│ … ┃  ┠──╂────────────┼────────────┼───┼─┼──┨ 3┃0.1 ┃=NORMSDIST($A3+B$1)-0.5 │=NORMSDIST($A3+C$1)-0.5 │ … │…│ … ┃  ┠──╂────────────┼────────────┼───┼─┼──┨ 4┃0.2 ┃=NORMSDIST($A4+B$1)-0.5 │=NORMSDIST($A4+C$1)-0.5 │ … │…│ … ┃  ┠──╂────────────┼────────────┼───┼─┼──┨ 5┃ … ┃  …         │  …         │ … │…│ … ┃  ┠──╂────────────┼────────────┼───┼─┼──┨ …┃ … ┃  …         │  …         │ … │…│ … ┃  ┠──╂────────────┼────────────┼───┼─┼──┨ …┃ ∞ ┃  0.5000…      │  0.5000…      │0.5000│…│ … ┃  ┗━━┻━━━━━━━━━━━━┷━━━━━━━━━━━━┷━━━┷━┷━━┛  

  • Zz_zZ
  • ベストアンサー率44% (756/1695)
回答No.2

 エクセルで簡単に計算できますので、お望みの Z までの表を作れます。  正規分布表の作り方は、Excel の各セルに、=NORMSDIST(4.0)-0.5 などとなるように、縦横軸のセルの値を参照するようにこの関数を埋めて 作れば簡単ですし、下5桁以上(~ Excel の有効数字以内)なら自由です。  Z=3.90 以上は、下4桁以下でしか差が無いので、丸めると全て 0.5 に なってしまいます。⇒ 作表しても無駄。  以下は、そのようにして自分用に作ったものです。(消すなよ!⇒ OKWeb) Z = 4.0 ~ 5.0 (とりあえず、下6桁まで) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Z   0.00   0.01   0.02   0.03   0.04   0.05   0.06   0.07   0.08   0.09 ------------------------------------------------------------------------------------------------ 4.0 0.499968 0.499970 0.499971 0.499972 0.499973 0.499974 0.499975 0.499976 0.499977 0.499978 4.1 0.499979 0.499980 0.499981 0.499982 0.499983 0.499983 0.499984 0.499985 0.499985 0.499986 4.2 0.499987 0.499987 0.499988 0.499988 0.499989 0.499989 0.499990 0.499990 0.499991 0.499991 4.3 0.499991 0.499992 0.499992 0.499993 0.499993 0.499993 0.499993 0.499994 0.499994 0.499994 4.4 0.499995 0.499995 0.499995 0.499995 0.499995 0.499996 0.499996 0.499996 0.499996 0.499996 4.5 0.499997 0.499997 0.499997 0.499997 0.499997 0.499997 0.499997 0.499998 0.499998 0.499998 4.6 0.499998 0.499998 0.499998 0.499998 0.499998 0.499998 0.499998 0.499998 0.499999 0.499999 4.7 0.499999 0.499999 0.499999 0.499999 0.499999 0.499999 0.499999 0.499999 0.499999 0.499999 4.8 0.499999 0.499999 0.499999 0.499999 0.499999 0.499999 0.499999 0.499999 0.499999 0.499999 4.9 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 5.0 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 ------------------------------------------------------------------------------------------------ 正規分布表 ┏━━┳━━━┯━━━┯━━━┯━━━┯━━━┯━━━┯━━━┯━━━┯━━━┯━━━┓ ┃ Z ┃ 0.00 │ 0.01 │ 0.02 │ 0.03 │ 0.04 │ 0.05 │ 0.06 │ 0.07 │ 0.08 │ 0.09 ┃ ┣━━╋━━━┿━━━┿━━━┿━━━┿━━━┿━━━┿━━━┿━━━┿━━━┿━━━┫ ┃0.0 ┃0.0000│0.0040│0.0080│0.0120│0.0160│0.0199│0.0239│0.0279│0.0319│0.0359┃ ┃0.1 ┃0.0398│0.0438│0.0478│0.0517│0.0557│0.0596│0.0636│0.0675│0.0714│0.0753┃ ┃0.2 ┃0.0793│0.0832│0.0871│0.0910│0.0948│0.0987│0.1026│0.1064│0.1103│0.1141┃ ┃0.3 ┃0.1179│0.1217│0.1255│0.1293│0.1331│0.1368│0.1406│0.1443│0.1480│0.1517┃ ┃0.4 ┃0.1554│0.1591│0.1628│0.1664│0.1700│0.1736│0.1772│0.1808│0.1844│0.1879┃ ┃0.5 ┃0.1915│0.1950│0.1985│0.2019│0.2054│0.2088│0.2123│0.2157│0.2190│0.2224┃ ┃0.6 ┃0.2257│0.2291│0.2324│0.2357│0.2389│0.2422│0.2454│0.2486│0.2517│0.2549┃ ┃0.7 ┃0.2580│0.2611│0.2642│0.2673│0.2704│0.2734│0.2764│0.2794│0.2823│0.2852┃ ┃0.8 ┃0.2881│0.2910│0.2939│0.2967│0.2995│0.3023│0.3051│0.3078│0.3106│0.3133┃ ┃0.9 ┃0.3159│0.3186│0.3212│0.3238│0.3264│0.3289│0.3315│0.3340│0.3365│0.3389┃ ┃1.0 ┃0.3413│0.3438│0.3461│0.3485│0.3508│0.3531│0.3554│0.3577│0.3599│0.3621┃ ┃1.1 ┃0.3643│0.3665│0.3686│0.3708│0.3729│0.3749│0.3770│0.3790│0.3810│0.3830┃ ┃1.2 ┃0.3849│0.3869│0.3888│0.3907│0.3925│0.3944│0.3962│0.3980│0.3997│0.4015┃ ┃1.3 ┃0.4032│0.4049│0.4066│0.4082│0.4099│0.4115│0.4131│0.4147│0.4162│0.4177┃ ┃1.4 ┃0.4192│0.4207│0.4222│0.4236│0.4251│0.4265│0.4279│0.4292│0.4306│0.4319┃ ┃1.5 ┃0.4332│0.4345│0.4357│0.4370│0.4382│0.4394│0.4406│0.4418│0.4429│0.4441┃ ┃1.6 ┃0.4452│0.4463│0.4474│0.4484│0.4495│0.4505│0.4515│0.4525│0.4535│0.4545┃ ┃1.7 ┃0.4554│0.4564│0.4573│0.4582│0.4591│0.4599│0.4608│0.4616│0.4625│0.4633┃ ┃1.8 ┃0.4641│0.4649│0.4656│0.4664│0.4671│0.4678│0.4686│0.4693│0.4699│0.4706┃ ┃1.9 ┃0.4713│0.4719│0.4726│0.4732│0.4738│0.4744│0.4750│0.4756│0.4761│0.4767┃ ┃2.0 ┃0.4772│0.4778│0.4783│0.4788│0.4793│0.4798│0.4803│0.4808│0.4812│0.4817┃ ┃2.1 ┃0.4821│0.4826│0.4830│0.4834│0.4838│0.4842│0.4846│0.4850│0.4854│0.4857┃ ┃2.2 ┃0.4861│0.4864│0.4868│0.4871│0.4875│0.4878│0.4881│0.4884│0.4887│0.4890┃ ┃2.3 ┃0.4893│0.4896│0.4898│0.4901│0.4904│0.4906│0.4909│0.4911│0.4913│0.4916┃ ┃2.4 ┃0.4918│0.4920│0.4922│0.4925│0.4927│0.4929│0.4931│0.4932│0.4934│0.4936┃ ┃2.5 ┃0.4938│0.4940│0.4941│0.4943│0.4945│0.4946│0.4948│0.4949│0.4951│0.4952┃ ┃2.6 ┃0.4953│0.4955│0.4956│0.4957│0.4959│0.4960│0.4961│0.4962│0.4963│0.4964┃ ┃2.7 ┃0.4965│0.4966│0.4967│0.4968│0.4969│0.4970│0.4971│0.4972│0.4973│0.4974┃ ┃2.8 ┃0.4974│0.4975│0.4976│0.4977│0.4977│0.4978│0.4979│0.4979│0.4980│0.4981┃ ┃2.9 ┃0.4981│0.4982│0.4982│0.4983│0.4984│0.4984│0.4985│0.4985│0.4986│0.4986┃ ┃3.0 ┃0.4987│0.4987│0.4987│0.4988│0.4988│0.4989│0.4989│0.4989│0.4990│0.4990┃ ┃3.1 ┃0.4990│0.4991│0.4991│0.4991│0.4992│0.4992│0.4992│0.4992│0.4993│0.4993┃ ┃3.2 ┃0.4993│0.4993│0.4994│0.4994│0.4994│0.4994│0.4994│0.4995│0.4995│0.4995┃ ┃3.3 ┃0.4995│0.4995│0.4995│0.4996│0.4996│0.4996│0.4996│0.4996│0.4996│0.4997┃ ┃3.4 ┃0.4997│0.4997│0.4997│0.4997│0.4997│0.4997│0.4997│0.4997│0.4997│0.4998┃ ┃3.5 ┃0.4998│0.4998│0.4998│0.4998│0.4998│0.4998│0.4998│0.4998│0.4998│0.4998┃ ┃3.6 ┃0.4998│0.4998│0.4999│0.4999│0.4999│0.4999│0.4999│0.4999│0.4999│0.4999┃ ┃3.7 ┃0.4999│0.4999│0.4999│0.4999│0.4999│0.4999│0.4999│0.4999│0.4999│0.4999┃ ┃3.8 ┃0.4999│0.4999│0.4999│0.4999│0.4999│0.4999│0.4999│0.4999│0.4999│0.4999┃ ┃3.9 ┃0.5000│0.5000│0.5000│0.5000│0.5000│0.5000│0.5000│0.5000│0.5000│0.5000┃ ┃4.0 ┃0.5000│0.5000│0.5000│0.5000│0.5000│0.5000│0.5000│0.5000│0.5000│0.5000┃ ┗━━┻━━━┷━━━┷━━━┷━━━┷━━━┷━━━┷━━━┷━━━┷━━━┷━━━┛ ---------------------------------------------------------------------------------------- CSV for Excel ---------------------------------------------------------------------------------------- Z,0.00,0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09 -,----,----,----,----,----,----,----,----,----,---- 0.0,0.0000,0.0040,0.0080,0.0120,0.0160,0.0199,0.0239,0.0279,0.0319,0.0359 0.1,0.0398,0.0438,0.0478,0.0517,0.0557,0.0596,0.0636,0.0675,0.0714,0.0753 0.2,0.0793,0.0832,0.0871,0.0910,0.0948,0.0987,0.1026,0.1064,0.1103,0.1141 0.3,0.1179,0.1217,0.1255,0.1293,0.1331,0.1368,0.1406,0.1443,0.1480,0.1517 0.4,0.1554,0.1591,0.1628,0.1664,0.1700,0.1736,0.1772,0.1808,0.1844,0.1879 0.5,0.1915,0.1950,0.1985,0.2019,0.2054,0.2088,0.2123,0.2157,0.2190,0.2224 0.6,0.2257,0.2291,0.2324,0.2357,0.2389,0.2422,0.2454,0.2486,0.2517,0.2549 0.7,0.2580,0.2611,0.2642,0.2673,0.2704,0.2734,0.2764,0.2794,0.2823,0.2852 0.8,0.2881,0.2910,0.2939,0.2967,0.2995,0.3023,0.3051,0.3078,0.3106,0.3133 0.9,0.3159,0.3186,0.3212,0.3238,0.3264,0.3289,0.3315,0.3340,0.3365,0.3389 1.0,0.3413,0.3438,0.3461,0.3485,0.3508,0.3531,0.3554,0.3577,0.3599,0.3621 1.1,0.3643,0.3665,0.3686,0.3708,0.3729,0.3749,0.3770,0.3790,0.3810,0.3830 1.2,0.3849,0.3869,0.3888,0.3907,0.3925,0.3944,0.3962,0.3980,0.3997,0.4015 1.3,0.4032,0.4049,0.4066,0.4082,0.4099,0.4115,0.4131,0.4147,0.4162,0.4177 1.4,0.4192,0.4207,0.4222,0.4236,0.4251,0.4265,0.4279,0.4292,0.4306,0.4319 1.5,0.4332,0.4345,0.4357,0.4370,0.4382,0.4394,0.4406,0.4418,0.4429,0.4441 1.6,0.4452,0.4463,0.4474,0.4484,0.4495,0.4505,0.4515,0.4525,0.4535,0.4545 1.7,0.4554,0.4564,0.4573,0.4582,0.4591,0.4599,0.4608,0.4616,0.4625,0.4633 1.8,0.4641,0.4649,0.4656,0.4664,0.4671,0.4678,0.4686,0.4693,0.4699,0.4706 1.9,0.4713,0.4719,0.4726,0.4732,0.4738,0.4744,0.4750,0.4756,0.4761,0.4767 2.0,0.4772,0.4778,0.4783,0.4788,0.4793,0.4798,0.4803,0.4808,0.4812,0.4817 2.1,0.4821,0.4826,0.4830,0.4834,0.4838,0.4842,0.4846,0.4850,0.4854,0.4857 2.2,0.4861,0.4864,0.4868,0.4871,0.4875,0.4878,0.4881,0.4884,0.4887,0.4890 2.3,0.4893,0.4896,0.4898,0.4901,0.4904,0.4906,0.4909,0.4911,0.4913,0.4916 2.4,0.4918,0.4920,0.4922,0.4925,0.4927,0.4929,0.4931,0.4932,0.4934,0.4936 2.5,0.4938,0.4940,0.4941,0.4943,0.4945,0.4946,0.4948,0.4949,0.4951,0.4952 2.6,0.4953,0.4955,0.4956,0.4957,0.4959,0.4960,0.4961,0.4962,0.4963,0.4964 2.7,0.4965,0.4966,0.4967,0.4968,0.4969,0.4970,0.4971,0.4972,0.4973,0.4974 2.8,0.4974,0.4975,0.4976,0.4977,0.4977,0.4978,0.4979,0.4979,0.4980,0.4981 2.9,0.4981,0.4982,0.4982,0.4983,0.4984,0.4984,0.4985,0.4985,0.4986,0.4986 3.0,0.4987,0.4987,0.4987,0.4988,0.4988,0.4989,0.4989,0.4989,0.4990,0.4990 3.1,0.4990,0.4991,0.4991,0.4991,0.4992,0.4992,0.4992,0.4992,0.4993,0.4993 3.2,0.4993,0.4993,0.4994,0.4994,0.4994,0.4994,0.4994,0.4995,0.4995,0.4995 3.3,0.4995,0.4995,0.4995,0.4996,0.4996,0.4996,0.4996,0.4996,0.4996,0.4997 3.4,0.4997,0.4997,0.4997,0.4997,0.4997,0.4997,0.4997,0.4997,0.4997,0.4998 3.5,0.4998,0.4998,0.4998,0.4998,0.4998,0.4998,0.4998,0.4998,0.4998,0.4998 3.6,0.4998,0.4998,0.4999,0.4999,0.4999,0.4999,0.4999,0.4999,0.4999,0.4999 3.7,0.4999,0.4999,0.4999,0.4999,0.4999,0.4999,0.4999,0.4999,0.4999,0.4999 3.8,0.4999,0.4999,0.4999,0.4999,0.4999,0.4999,0.4999,0.4999,0.4999,0.4999 3.9,0.5000,0.5000,0.5000,0.5000,0.5000,0.5000,0.5000,0.5000,0.5000,0.5000 4.0,0.5000,0.5000,0.5000,0.5000,0.5000,0.5000,0.5000,0.5000,0.5000,0.5000 -------------------------------------------------------------------------

gost
質問者

補足

以前も大変有り難うございました。 以前の答えが消されてしまってびっくりしました。 ところで、私が持っている正規分布表とまったく数値が逆転しています。 私の持っている標準正規確率表は、z0.00が0.5000で、3.9が0.0000です。 私が持っている表の場合は、4.0以上も、0.0000と考えてよいでしょうか。 でも、Zz_zZ様の送ってくださった表の方が、私が必要としている表かもしれません。

  • siegmund
  • ベストアンサー率64% (701/1090)
回答No.1

無限まで書けないから適当なところで打ち切っているだけでしょう. 表によってはもっと載っているのもあります. z>3.9 の確率は0.0002 くらいですから実用上あまり問題がないでしょう. > zが3.9以上になってしまった場合は、どう処理すればよいのでしょうか? 載っている表を探すか,自分で数値積分するより他ないですかね. なお, Erfc(x) = ∫{x~∞} exp(-t^2) dt として e^x Erfc(√x) = Σ{n=0~∞} (-1)^n (2n-1)!! / 2^(n+1) x^{n+(1/2)} という漸近展開が岩波の数学公式集に載っています. 正規確率積分は Erfc(x) をちょっと変形しただけですから, この漸近展開も使えますね. > zが3.9以上になってしまう場合は、正規分布に該当しないのでしょうか? 数学的に正規分布だという前提なら,z がどこまで行っても正規分布です (こりゃ,あたりまえですか). 実用上はあまり z の大きい裾の部分は怪しいです. 例えば,ある集団の人間の身長を測定して,平均値と分散が求まったとします. 正規分布に従うとしますと, サンプルの数を多くすれば身長3mとか,身長が負(!)などを観測する可能性も あるわけですが,実際そんなことは起きませんよね.

gost
質問者

お礼

早速の御返答有り難うございました。 ヒントになりました。

関連するQ&A