• 締切済み

レーリーの式の求め方が知りたいです。

光リソグラフィーの勉強をしているものです。 よくみるレーリーの式 最小解像度 R=k1*λ/NA 焦点深度(DOF) DOF=k2*λ/(NA)2乗 は、どうやって求められたのでしょうか? なぜ、短波長の光源を使えば最小解像度が小さくなるのですか? 詳しい方、教えていただけませんか?

みんなの回答

noname#11476
noname#11476
回答No.2

自分が専門家に該当するかどうかわかりかねていますが、わかる範囲でお答えします。 まず、k1,k2はプロセスファクタと呼ばれる物で、光学の計算から求められた物ではありません。これはレジスト材料の種類、その他etcの条件変わる数値です。 元々の光学から求められた、RとDOFの式にあとで追加した物だと考えて下さい。 それ以外の光学部分の式は、キルヒホッフの回折理論がベースになっています。 この回折理論からフーリエ光学(別名スカラー理論とも言います)という美しい体系が生まれました。 最小解像度の式は、円形開口がある時の非常に遠方での回折像(これをフランフォーファ回折といいます)の導出によって得られます。 「非常に遠方」は丁度開口の後にレンズをおいて結像させたときの像に一致します。 焦点では丁度波面は光軸に対して垂直でかつサイズは最小となります。 元になる式は、像の振幅分布をU(x,y)とすると、 U(x,y)=C×[exp{-ik(ax+by)}]のda,dbの二重積分、範囲a^2+b^2<=NA^2 で表され、これを解くと(途中極座標変換などします)ベッセル関数Jで表される答えを導き出すことが出来ます。 強度分布はI(w)=U(w) :ここでwは中心からの半径 になります。この式で第一エアりーディスク(中心から進んで光強度が初めに0になる円)の半径までを解像度の大きさとします。 次に、焦点深度の方は、デフォーカスしたときの波面がλ/4になるまでの距離で求められます。 いずれにしても結構計算があって、ちょっと説明しきれないので、詳しくはフーリエ光学の本を見て下さい。 応用物理学会の日本光学会で発行している「光学」という学会誌の1992/5月号より12月号まで、 「フレッシュマンのための現代光学」 という題名でわかりやすく解説されていますから、参照されると良いでしょう。 なお、なぜ短波長の光源が最小解像度が小さくなるのかというご質問ですが、 基本的に光は波であるため、絶えず広がろうとする性質があります。しかも集めれば集めるほど広がろうとする力が増加します。 そのため、レンズで一生懸命絞ろうとしても、限界があるわけです。 ところが波長が0の光を考えると、もはや波ではなくなります。(波長が0ということは波にはなりえませんよね?) そうすると、波の性質は無くなるので、一点に光を集めることが出来ます。 現実にはそんな波は無限大のエネルギが必要になりますので作ることは出来ませんが、概念的にはそうなります。 近似的にこれを扱うのが「幾何光学」と呼ばれるものです。 故に、波長が短くなるほどこの粒子的な性質が波としての性質よりどんどん強くなるので、同じNAだと単純により絞り込むことが出来るようになります。 NAが大きいと小さく絞り込めるのは、光が広がる前に強い力で集めようと言う意味だと思って下さい。 この先、多分変形照明など色んなケースを学ばれるでしょうから、フーリエ光学の基礎は勉強された方がよいと思います。 では。

  • stomachman
  • ベストアンサー率57% (1014/1775)
回答No.1

回答こないですねえ。 レーリーの式というのは多分、アッベの回折理論あたりから簡単に出てくるような気が..... 資料探さねばきちんとしたことが言えませんが、たしか... 解像度を云々する以上、物体は縞しまのもの、つまり回折格子であるとして良く、散乱光と回折光の干渉でどうしたこうしたでした。うわ、いい加減。 しかし、「なぜ、短波長の光源を使えば最小解像度が小さくなるの」か、もっと正確には「なんで最小解像度は波長に比例するのか」という話なら、「哲学的考察」あるいは次元解析で即解決ですよ。 (1) ある光学系Aが、r の解像度、d の焦点深度を持っているとします。このシステムAを完全に相似的に、サイズを1/10に縮小すると、その解像度、焦点深度はどうなるでしょうか。  単なる相似ですから、答は1/10。r/10 の解像度、d/10の焦点深度 と出る訳です。このとき、注意すべき事は:システムAで使っている光もサイズが1/10に縮小されていなくてはならない。つまり10倍短い波長を使っているわけですね。(正確には、もしAに動く部分があるのなら時間も1/10にすべきです。) (2) 光学系Aが理想的であって、限界の性能に達しているとするならば、その限界を決めているのは光の波長である(これはご納得戴けると思いますが)。だとすれば、Aに比べて1/10の波長を使う、同じように理想的な光学系Bを作ったときの限界性能は、(1)に出てきた「Aを(波長も含めて)1/10に縮小したもの」と何ら変わる筈がありません。  従って、最小解像度が波長に比例しなかったら、それこそびっくりですよ。 なお、「同じ光学系Aにおいて、波長を1/10にしたのに解像度が波長に比例しない」とすれば、それは光学系Aが短い波長では精度不足だ、ということに過ぎません。

smash
質問者

お礼

お礼がおくれてしまいましたが、ありがとうございました。 単なる相似である、という考え方は直感的に理解しやすいです。

関連するQ&A