- 締切済み
反応速度式の展開について教えてください!
a + b ⇔ c の気体反応では、反応速度式は(1)式になると教科書にあります。 dGc/dx = S/RT × ( k1×Pa×Pb - k2×Pc ) (1) Gc:気体c のモル流量[mol/min] V:体積[m3] R:気体定数 T:温度[T] x:筒の長さ[m](dxは、筒の微小長さ) S:筒の断面積[m2] k1:正反応の反応速度定数 k2:逆反応の反応速度定数 Pa:気体aの分圧 Pb:気体bの分圧 Pc:気体cの分圧 しかし、反応速度式は教科書から、 d[c]/dt = k1[a][b] (2) -d[c]/dt = k2[c] (3) となり、(2)式と(3)式から d[c]/dt = k1[a][b]-k2[c] (4) になります。 また、気体の状態方程式PV=nRTから、n/V =P/RTとなるので、 [a] = Pa/RT [b] = Pb/RT [c] = Pc/RT となり、(4)式は(5)式になると思います。 d[c]/dt = k1×Pa×Pb / (RT)^2 - k2×Pc / RT (5) となります。そして、左辺は、 d[c]/dt [mol/m3/min] = dGc/V [mol/min/m3] で、 V[m3] = dx[m]×S[m2] なので、 dGc/(dx×S) になり、最終的には、以下の式に展開されてしまいます。 dGc/dx = S×(k1×Pa×Pb / (RT)^2 - k2×Pc / RT) どうやれば、(1)式に展開できるのでしょうか?無茶苦茶、悩んでいます。 どうか、よろしくお願いします。
- みんなの回答 (1)
- 専門家の回答
みんなの回答
- nananotanu
- ベストアンサー率31% (714/2263)
d[c]/dt = k1[a][b] (2) -d[c]/dt = k2[c] (3) となり、(2)式と(3)式から d[c]/dt = k1[a][b]-k2[c] (4) ---------- 本当に???