ベストアンサー 2回微分した方程式 2005/10/19 18:12 d^2y/dx^2=1/y^2 これ、図書館で微積分の本を探しても解法が見つかりません。専門の本が少ない図書館なので困ってしまいました。 みんなの回答 (4) 専門家の回答 質問者が選んだベストアンサー ベストアンサー masterasia1919 ベストアンサー率40% (29/72) 2005/10/19 20:42 回答No.2 はい、このタイプの微分方程式ですね。 ええと、このような微分方程式は、解法のやり方が決まっています。!!で、そのやりかたを正直忘れてしまいました。とりあえず、微分方程式はラプラス変換 を使ってとくのが定石です。図書館でラプラス変換と微分方程式をor検索して出てきた図書でラプラス変換と微分方程式とかって載っている本を見てみてください。解法が載っているはずです。 質問者 お礼 2005/10/24 09:11 ありがとうございました!休日に別の図書館に行って解決できました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (3) noname#17965 2005/10/19 22:47 回答No.4 質問履歴を見る限り学校の勉強で使うとは思えないようですが、そうなのでしょうか。レポートの質問をする場合は自分の考えも書くルールになってます。しかし学校の勉強以外の用途がハッキリしていれば、用途を書いた方がそのものズバリの回答がもらえる可能性が高いと思います。 質問者 お礼 2005/10/24 09:06 レスしていただいてありがとうございました!解決しました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 masterasia1919 ベストアンサー率40% (29/72) 2005/10/19 22:24 回答No.3 このような微分方程式の問題のとき方を書いた本は一杯あります。少なくないです。とくに電気工学の書物にあります。 お勧めは、南谷晴之氏が書いた電気回路演習ノートって本に書いてあります。専門の図書館なら必ずあるはずですので参考にしてください。 質問者 お礼 2005/10/24 09:08 ありがとうございました!別の本で解決できました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 guuman ベストアンサー率30% (100/331) 2005/10/19 18:41 回答No.1 dy/dxを両辺にかけて眺める 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 初歩的な微分方程式について分からないことがあります。 y´=x/y^2 という微分方程式で、私が読んでいる本に書いてある解法は、 y^2(x)y´(x)=x xについて両辺を積分すると、 ∫y^2(x)y´(x)dx=∫xdx …(1) よって 1/3y^3=1/2x^2+C となっていて、(1)のところで両辺を積分していますが、両辺を積分するという演算を行っても良いのでしょうか? そのまま=は成り立つのでしょうか? これは、A=Bのとき、logA=logB というような事と同じと考えて良いのでしょうか? また、本には以下のような別の解法も載っていました。 dy/dx=x/y^2 y^2dy=xdx (両辺にy^2dxをかけて) ∫y^2dy=∫xdx …(2) よって 1/3y^3=1/2x^2+C (2)のところで、両辺に∫だけを書き加えているのはなぜでしょうか?いつもペアで書く、dxはどうなってしまったのでしょうか? 特に、(2)の左辺ではdxはなく、結果的にdyという表示になっています。yはxの関数であり、xについて積分するのに、(2)の左辺が∫y^2dyとなり、yについて積分するような計算になることがどうしても理解できません。 数学的に厳密でないところや、私の考え方が間違っているところがあるかと思いますが、どなたか教えていただけると幸いです。 微分方程式 d^2y/dx^2=ay これをa>0,a=0,a<0に積分の段階で場合わけするのですが、a>0とa=0のときの解法がいろいろ探したのですがわかりませんでした。 とき方、もしくはヒントをもらえませんでしょうか。 微分方程式の解き方 すいません、以下の微分方程式の解法が分かる方教えて下さい。 宜しくお願いします。 専門外で困っています。 yはxの関数として、 y'' + A*y' = B*exp(-y) A,Bは定数、y'' = d^2y/dx^2, y' = dy/dx 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 微分方程式の解き方 すいません、以下の微分方程式の解法が分かる方教えて下さい。 宜しくお願いします。 専門外で困っています。 yはxの関数として、 y'' + A*y' = B*exp(-y) A,Bは定数、y'' = d^2y/dx^2, y' = dy/dx 初期条件 x=0, y'=0 ----------------------- Ae610様; <中略> e^y = u・・・とおくと、 u' = y'・e^y u" = y'・y'・e^y + y"・e^y -- となるのでは? 微分方程式の問題です。 微分方程式の問題です。 微分方程式の問題で、 (d^2y)/(dx^2)+(tanx)*{(dy)/(dx)}+(cos^2x)*y=0 の一般解を求めよという問題なのですが、解き方が分からず困っています>< 解法が分かる方がいれば、解法を教えていただけないでしょうか? よろしくお願いします!! 微分方程式の問題なんですが d/dx{1/log(x)*dy/dx}=0って問題なんですが、自分なりに解いてみたんですが、あってるかどうか教えてください。 /////回答///////////////////////////// 一回積分して 1/log(x)*dy/dx=C1 dy=C1*log(x)*dx 積分して y+C2=C1{x*log(x)-x} でいいんでしょうか? 特に、一番初めの積分が成り立つのかが不安なんですが。 ご教授お願いします。 特にd(f(x,y))の部分がよくわかってません。 微分方程式の解法 d^2y/dx^2+2*x*dy/dx=0 境界条件 x=0: y=1、x→∞: y→0 この2階の微分方程式を解けという問題ができません。 dy/dx=z と置いて、1階の微分方程式にして解こうとしたのですが、exp(-x^2)が出てきてしまいました。これは確率積分みたいに積分できるのでしょうか。 回答よろしくお願いします。 微分方程式 (y+3x)dX+(x+1)dy=0 この微分方程式の一般解を求めたいのですか、(y+3x)dXはyがあるので積分できないし、(x+1)dyはxがあるので積分できないです。どのように解けばいいですか? 微分方程式を教えてください。 y'=x・y^2 という微分方程式を解きたいのですがうまくいきません。 (両辺を積分するところでつまずいてしまいます) y=tanθとおけば解ける問題なんでしょうか? 解法を教えてください。お願いします。 偏微分方程式の解き方 x(y-z) (∂z/∂x) + y(z-x) (∂z/∂y) = z(x-y) この微分方程式を解く問題で、解答を見ても、理解できない部分があるため、質問させていただきます。 ~解答~ 補助方程式 dx/x(y-z) = dy/y(z-x) = dz/z(x-y) これより、 (1/x)dx / (y-z) = (1/y)dy / (z-x) = (1/z)dz / (x-y) と変形できます。 ここまでは分かるのですが、 これに加比の理を適用すると、 d(logx+logy+logz) / 0 = ((1/x)dx+(1/y)dy+(1/z)dz) / ((y-z)+(z-x)+(x-y)) = (1/x)dx / (y-z) = (1/y)dy / (z-x) = (1/z)dz / (x-y) ↑ここの1つ目のイコールが何故、成り立つのかが理解できません。 d(logx+logy+logz)を計算したら、1/x + 1/y +1/z になってしまわないでしょうか? 逆に、積分してlogになったのだとしても、dが残る理由が理解できません。 よろしくお願いします。 一応、続きも書いておきます。 ここで、d(logx+logy+logz) / 0 より、 d(logx+logy+logz) / 0 = d(logxyz) = 0 よって、logxyz = C' ゆえに、xyz = C (積分定数) このあと、もう1つの解を出して、一般解とします。 2階微分方程式について yy"+(y')^2+1=0 解:(x+A)^2+y^2=B^2 の解き方がわかりません。 dy/dx=pとして d^2y/dx^2=dp/dx=dy/dx・dp/dy=p(dp/dy) . yp(dp/dy)+p^2+1=0......(1)問題式にd^2y/dx^2、dy/dx=pを代入する。 p(dp/dy)+p^2/y+y.......(2)両辺に1/yをかける。 . ベルヌーイ形なので,u=p^2 (du/dy=2p・dp/dy)を代入して、 1/2du/dy+u/y=-y.....(3) . uとyの、線形微分方程式として解いて、 u=p^2=1/y^2(-1/2・y^4+C)......(4) . p=±1/y√(-1/2・y^4+C)........(5) この後(5)を積分して解が出ると思うのですが、 (それ以前に考え方自体が間違っているかもしれませんが) 右辺の積分の仕方がわからず解けなくて困っています。 どなたか教えてください 微分方程式 (x^2+4x+5)/x d^2y/dx^2 + (x^2-5)/x^2 dy/dx = 0 f(x) = (x^2+4x+5)/x とすると df/dx = (x^2-5)/x^2 なので、与式は (d/dx)(f(x)*(dy/dx)) = 0 これを一般解で表したいのですがf(x)*(dy/dx)=C1まではわかるのですがその先がわかりません。 お願いいたします。 また、x/(x^2+4x+5)を積分することは可能でしょうか。できたらその方法をよろしくお願いいたします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 同次形微分方程式 次の問題がわかりません。 次の微分方程式を解け。 (1)(x-y)(dy/dx)=2y (2)dy/dx=y/x+sin(y/x) (1)(x-y)(dy/dx)=2y (dy/dx)=2y/(x-y) 右辺の分母分子をxで割る (dy/dx)=2y/x/(1-y/x) y/x=uとするとdy/dx=u+xdu/dxより u+xdu/dx=2u/1-u xdu/dx=2u/1-u -u xdu/dx=u+u^2/1-u (1-u)du/(u+u^2)=dx/x 両辺を積分 の左辺の積分がわかりません。それかもっといい方法あったら 教えてください。 (2)y/x=uとするとdy/dx=u+xdu/dxより u+xdu/dx=u+sinu xdu/dx=sinu du/sinu=dx/x 両辺を積分 の左辺の積分がわかりません。お願いします。 4階の微分方程式 (1) (d/dx)^4y + 8(d/dx)^2y + 16y = 0 (2) (d/dx)^4y + 8(d/dx)^2y + 16y = sinx それぞれの微分方程式の一般解を求めろという問題に困っています。 自分の持っている本を調べたところ、直接特殊解を求めており一般解については言及していません。 2階の時と同様に (1)は特性方程式 t^4 + 8t^2 + 16 = 0を解く (2)は同次方程式(1)を使うという方法でよろしいのでしょうか? よろしくお願い致します。 微分方程式 dy/dx=y/(x-1)(x+1)の解法を教えてください。 対数まではいくのですが、その先がわかりません。 二階微分方程式 以下の微分方程式の解法がわからずに困っています。 d^2y/dx^2 - axy = 0 最初の項は y を x で二階微分したものを意味しています。 a は正の定数です。 どなたか教えていただけないでしょうか? 連立微分方程式の解き方を教えてください. 連立微分方程式の解き方を教えてください. 2d(^2)y/dt^2-dx/dt-4y = t 4dx/dt+2dy/dt-3x = 0 ヒントとしてtで一回微分するとよいとありました. まだ勉強を初めて間もないので,解法が本当にわかりません. お手数ですが,御教授よろしくお願いいたします. 微分方程式 dx/dt=3y dy/dt=x-z dz/dt=-y この微分方程式の解法をお願いします。 微分方程式 積分方程式 について 微分方程式y'=x+1について、 解は、 dy/dx=x+1 変数分離を行って、 dy=(x+1)dx 両辺を積分すると、 ∫dy=∫(x+1)dx・・・(※) よって、 y=1/2x^2+x+C (※)の部分ですが、これは積分方程式と 言っていいのでしょうか? 積分方程式って、何なんでしょうか? Wikipediaを見たのですが、わかりませんでした・・・ 以上、ご回答よろしくお願い致します。 微分方程式 y'=1-(y/x)をときたいのですが、 dy/dx=1-(y/x) dy/y=dx/y -dx/x 両辺を積分して log|y|=x/y-log|x| +C y=e^(x/y) /x xy=e^(x/y) となったのですが、解答には y=x/2 -4/xとなっています。 間違いを指摘してもらえますか? 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ありがとうございました!休日に別の図書館に行って解決できました。