- ベストアンサー
無限遠点での留数
下の2つの有理関数の無限遠点での留数を求めようと思うのですが、[a][b][c]の方法で別々に考えると答えが合いません。考え方が間違っているのでしょうか、根本的に勘違いをしているのでしょうか、指摘してくださるとうれしいです。よろしくお願いいたします。 (1) z^3/(z^4 - 1) (2) z^3/(z^2 + 1) [a] Res(∞,f(z)) = -Res(0,f(z)) を使うと、(1)は0となり不正解、(2)は0となり正解 [b] z=1/w と置換してから展開したものに(-1/w^2)を乗じて考えると、(1)は-1となり正解、(2)は1となり不正解 [c] z=0 での展開結果で z=1/w を代入し(-1/w^2)を乗じて考えると、(1)は0となり不正解、(2)は0となり正解 参考書の答えでは、(1)の答えは-1、(2)の答えは0、となっています。
- みんなの回答 (4)
- 専門家の回答
お礼
留数の定義や、無限遠点での留数の定義など、基礎的なところが曖昧だったせいで色々と意味のわからないことになってしまっていたんですね、昨日アドバイスをいただいてから確認してみて、納得できました。 明快なご説明をありがとうございました。