ベストアンサー ベクトルの問題 2005/03/05 22:25 3組の対辺が互いに垂直であるような四面体Vがある。このとき、Vの各辺の中点は、Vの重心を中心とするある1つの球面上にあることを示せ。 という問題がわかりません。よろしくお願い致します。 みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー kony0 ベストアンサー率36% (175/474) 2005/03/06 01:46 回答No.1 けっこう愚直に計算すれば示すことができます。 かなり答えに近いですが、敢えて「全て」を書かないことにしました。 →AB=b, →AC=c, →AD=dと表記すると、 1.条件から内積b・c=c・d=d・bがいえる。 2.Vの重心から各辺の中心までのベクトルは、 [例2-1.ACの中点まで](1/4)(-b+c-d) [例2-2.BCの中点まで](1/4)(+b+c-d) という形になる。(他の中点までのベクトルもすべて求める必要あり。私は省略します。) ※Vの重心をGとして、→AG=(1/4)(0+b+c+d)は所与のものとしてます。 3.上記2.のベクトルの長さの2乗は、1.の内積の値をkと表記すると、いずれも(1/16)*(|b|^2+|c|^2+|d|^2+●k)となる。 (●には数字が入ります。計算して確かめてください。) ちなみに、1.に関して類題。 「四面体ABCDにおいて、AB⊥CD,AC⊥BCのとき、AD⊥BCであること(2組の対辺が互いに垂直であれば、もう1組存在する対辺も垂直であること)を示せ」 質問者 お礼 2005/04/04 23:46 大変遅くなってしまい申し訳ありません。 回答ありがとうございました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 対辺が互いに垂直な四面体 3組の対辺が互いに垂直であるような四面体Vがある。このとき各辺の中点は、Vの重心を中心とするある1つの球面上にあることを示せ。 この問題を解こうと思っているのですが、何をやるのかが全く見えてきません・・・。 何の分野なのかも見当がつきません。 「対辺が互いに垂直」というのは四面体が直方体の中に描けるということなのでしょうか? 回答いただければ幸いです。 よろしくお願いいたします 位置ベクトルの問題です!直ぐ知りたいです!!! 六角形の各辺の中点を順にL、M、N、P、Q、Rとするとき、三角形LNQと三角形MPRの重心は一致する事を証明するにはどうすればいいんでしょうか??? かなり悩んでます!!! ゴーシュ四辺形 立体幾何の問題がわからないので質問します。 ゴーシュ四辺形ABCDは、添付した図のように対角線BDが分ける2つの三角形ABDとCBDとが、別々の平面上にあるものである。(もしほかの対角線ACを引けば、これと同じように2つの三角形BACとDACとは別々の平面上にある。また2つの対角線AC,BDは同一平面上にない。)という定義があって、 問題は、ゴーシュ四辺形の対辺が2組とも垂直であるときは、対辺の平方の和は相等しい事を証明する。 自分は、対辺の中点を結んで中点連結定理を使えば、各辺に平行な直線で長方形をつくれると考えたのですが、それでは、対辺の長さを比較するには、まわりくどそうですし、わからなかった。解説をよめば、四辺形の2隣辺を2辺とする平行四辺形を作れ。と書いてありました。対辺が垂直だから、解説のとおりに作った平行四辺形は、長方形になることがあり、その場合は隣辺の長さが違うので、証明できないとおもいます。もし解説のとおりに作った平行四辺形が、いつも正方形なら、証明はできると思いました。どなたかなぜ対辺の平方の和は相等しいのかを解説してください。お願いします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 数学ベクトル問題 数学ベクトル問題 四面体ABCDにおいて、辺AB、CDの中点を結ぶ線分の中点をMとすると、直線AMは△BCDの重心Gを通ることを示せ。 という問題の解説お願いします(>_<) ベクトルの問題 三角形の内部に一点Pを取り、その点から各辺(3辺)に下した垂線の長さをa,b,cとする。 a^2+b^2+c^2が最小になるようにしたい。どのような条件を満たす点か。 ヒント:Pが望む点になっているならば、Pから任意の方向に微小ベクトルv動かしても、2乗の和の値は不変である、(極地のため)、という考え方を利用してベクトル的に解くのが良い。なお、vは微笑だからv^2は|v|に対して無視できる。一般に三角形は3辺に垂直な3つの(単位)ベクトルを決めなければ決定されるのは当然である。 この問題が分からないので、教えてください。 工学部の教授が作った数学問題なので、多少数学的ではないかもしれません。 分かる人には極簡単な問題です。 分かる人には至極簡単な問題だと思います。 「滑らかな球面の頂上に物体をのせ、初速度V0で物体を滑らせるとき、 物体はどこで球面を離れるか?」 という問題です。 球面から質点が受ける垂直抗力をRとおき、ここで法線方向の運動方程式を 球面の中心から外へ向く方向を正とおいて、 m・(V・V/r)=-mg・cosθ+R と書きました。(※Vの二乗が書けず、V・Vと書きました。 以下・は×<かける>の意) しかし、力学的保存則より、 V・V=(V0・V0)+2・g・r・(1-cosθ) を入れると、答えである、 H=(2/3)r+V・V/3g になりません。 なぜか教えてください。 平面ベクトルの問題です 問題集にさらっと書いていてわからないところが有ります (ベクトルは文字のあとに→をつけます) 問、三角形ABCの重心をG、辺BCの中点をMとし、GA→=a→、GB→=b→とする。GC→をa→、b→を用いて表せ。 ヒントにはGA→+GB→+GC→=0→とあるのですがこれはなぜこのようなものが出来るのでしょうか? お願いします。 図形 △ABCの外心をO,重心をG、垂心をH,BCの中点をMとすると (1)AH=2OMであることを示す。 (2)O,G,Hは一直線状にあって、OG:GH=1:2であることを示す。 問題の2つについて教えてください。 数学1の平面図形を勉強してからこの問題に取り組んだのですが問題になるとわかりません。 〇△ABCの外心だから図は三角形の外周りに円がある図形。 〇重心は三角形の頂点とその対辺の中点を結ぶ 3 つの線分は 1 点で交わり、比が1:2 〇垂心は三角形の 3 つの頂点からそれぞれの対辺に引いた垂線は 1 点で交わる点 図はなんとか書けそうなのですが解き方が解りませんので、ご指摘宜しくお願いします。 平行四辺形の定義・性質について 平行四辺形の定義、性質、条件について教えてください。 定義:2組の対辺がそれぞれ平行 性質:2組の対辺がそれぞれ等しい 2組の対角がそれぞれ等しい 対角線がそれぞれの中点で交わる と多くのHP、教科書にありますが、 例えば「平行四辺形の性質を答えなさい」と問われたとき、 「2組の対辺がそれぞれ平行」と答えたら、 これは正しいでしょうか? (定義は性質として含めてOKなのでしょうか?) また同じ質問で、 「1組の対辺が平行かつ長さが等しい」 と答えたら、 これは間違っていますか? (条件と性質はイコールでしょうか?) 以上基本的な質問で申し訳ないのですが、 よろしくお願い致します。 三角形の重心 三角形の重心について質問です!! 一つの三角形の各辺の中点を結ぶと、三角形の中に小さな三角形ができますが、その小さな三角形と外側の三角形の重心は一致しますよね?? どのように証明すればよいのですか? 相似や合同、平行等の条件を使うのですか? 是非とも教えてください!!! 数学1Aの図形のもんだいなんですが。 数学1Aの図形のもんだいなんですが。 円の中心と元の中点を結んでできる線分は元と垂直である。 というのはなぜでしょうか。 数学A図形について 数学Aの図形について質問です。 解説について質問です。 重心と外心が一致する三角形について問題なのですが。 GDとBCが垂直だと外心の定義から導いたとしても、 ADとBCが垂直になるとは限りませんよね。 重心は、対辺Cの長さがBよりも長かったとしても成り立ちますし。 要するに、ADが導き出されれば、GDは同じくとなりますが、 GDがすいちょくだとしても、その逆は成り立たないと思うのですが。 これでいいのはなぜなのかを教えてください。 AGがGDと少し微妙に屈折してるかもしれませんしね。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 3つの線分は、同じ点で交わることをベクトルを用いて示す問題について 「四面体ABCDがある。互いにねじれの位置にある辺の中点を結ぶ3つの線分は同じ点で交わることを示せ。」 という問題があり、この正解答として掲載されている解法が理解できません。 その解法の流れは、 まずAB、CDの中点をP、Qとしたとき、PQの中点の位置ベクトルを求め、同様にその他のねじれの位置にある辺の中点を結ぶ辺の中点を求め、結果的にその中点は同じ位置ベクトル「($a+$b+$c+$d)/4」($はベクトル記号とする)であるから同じ点で交わる。 としていますが、僕にはPQの「中点」が交点だという推測ができません。 なぜ「交点」はねじれの位置にある辺の中点を結ぶそれぞれ辺の「中点」だと事前に推測できるのですか? その点について整理したいです。お手数ですが、そのための助言などをしていただきたいです。 よろしくお願い致します。 平面幾何のアフィン変換の問題を教えて下さい。 3角形の3頂点と対辺の中点を結ぶ3直線は1点で交わる事を示しなさい という問題です。 どうすればいいのでしょうか? 分かる方教えて下さい、お願いします ベクトルを使っての証明 以下の問題について質問です 正6角形ABCDEFにおいて辺AB、BC、CD、DE、EF、FAの中点を それぞれP、Q、R、S、T、U とする。 △PRTの重心と△SQUの重心は一致することを証明せよ。 私は △PRTと△SQUは6角形の対角線について対称だから 2つの重心は重なる。 と思ったのですが解答には重心ベクトルが等しいことを示すとあります。 ベクトルを使う必要はあるのでしょうか? あたそれはどのように証明するのですか? よろしくお願いします。 数学の問題がわかりません。 数学の問題がわかりません。 以下の問題ですが、出だしから検討がつきません。 だれかアドバイスおねがいします。 問 正八面体の互いに平行な2つの面をとり、それぞれの面の重心をG1,G2とする。G1,G2を通る直線を軸としてこの八面体を1回転させてできる立体の体積を求めよ。ただし、八面体は内部を含むものとし、各辺の長さは1とする。 ベクトルの問題を教えてください! ベクトルの問題を教えてください! すみません、教科書の章末問題が難しくて解けません。 問題は、 三角形XYZにおいて辺ZYを2:1に内分する点をV、 線分XVの中点をMとし、直線ZMと辺XYの交点をDとする。 (1)→ZD=k→ZMを満たす実数kの値 (2)XD:DY 今日中にヒントだけでもいただけるとありがたいです。 命題関数の問題です 独学で命題関数を勉強しているのですが、なかなか理解できません。 次の問いの答えがわかる方がいらっしゃいましたら、よろしくお願いします。 Xを三角形の集合とし、命題pを“二等辺三角形である”とするとき、次の命題の真偽を定めよ。 (1)2つの内角の大きさが等しい△ABCについてp(△ABC)の真偽 (2)1つの頂点と対辺の中点を結ぶ線分が対辺に垂直になる△ABCについてp(△ABC)の真偽 (3)1つの内角が90°であるような△ABCについてp(△ABC)の真偽 ベクトル、誰か助けて よろしくお願いします。結構苦戦してるんです。 四面体OABCがある。OAを→a、OBを→b、OCを→cとする。 三角形ABCの重心をGとし、OCの中点をMとする。 OGと三角形MABの交わる点をLとした時、OLを→a、→b、→cを使って あらわしなさい。 って問題なんです。試験に出そうなんです。誰か助けて! [ベクトル] 球面の方程式 空間ベクトルで分からない問題があり、困ってます。 【点A(2,0,0) と球面 x^2+y^2+z^2=1 上の点Pとを結ぶ線分APの中点Qの軌跡を求めよ。】 というものです。尚、答えは (x-1)^2+y^2+z^2=1/4 となるみたいです。 球面の方程式についての数学IIBの知識は、基礎程度は分かっているつもりなのですが、この問題はイメージがよく掴めないです。 分かる方、解説をしていただけないでしょうか。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
大変遅くなってしまい申し訳ありません。 回答ありがとうございました。