- ベストアンサー
数学A図形について
数学Aの図形について質問です。 解説について質問です。 重心と外心が一致する三角形について問題なのですが。 GDとBCが垂直だと外心の定義から導いたとしても、 ADとBCが垂直になるとは限りませんよね。 重心は、対辺Cの長さがBよりも長かったとしても成り立ちますし。 要するに、ADが導き出されれば、GDは同じくとなりますが、 GDがすいちょくだとしても、その逆は成り立たないと思うのですが。 これでいいのはなぜなのかを教えてください。 AGがGDと少し微妙に屈折してるかもしれませんしね。
この投稿のマルチメディアは削除されているためご覧いただけません。
補足
“重心である時”は、そうだと思いますよ。 でも、その時はその時で、外心のODが同一直線上にあるとは言えるのでしょうか。 そもそも直線の定義というか公理というのかがよくわからなくてググりましたけど、明確にされていないらしいので、、 でも、少し曲がってる可能性もあるじゃないですか。 AGが“外心である時“というその時では。 なんでAGとGDが同一直線上にあるのかを。 教えてくれませんか。 GDは垂直二等分線上だとしても、AGから左に1度曲がってるかもしれません。 曲がってないことを証明できれば、ADが重心であることに一致します。GDだけが垂直二等分線だとしても、ADも同様にとはなり得ないと言いたいです。