- ベストアンサー
必要十分条件の判定について
m≠0であり、A=n^2-n-mとする。 mが整数Aの約数であることは、mがnまたはn-1の約数であるための□である。 という問題なんですが、まずAをn(n-1)-mとすると後者から前者であることはわかりました。とりあえず必要条件成立です。ですが前者から後者の判定が出来ませんでした。解答を見ると「例えばm=6,n=4の場合を考えると...」と書いて反例を挙げることによりこれを成り立たないとしていました。ここでなんですが、この反例の具体値って言うのは何か根拠があって出てくる数字なのでしょうか?それとも適当に当てはめていって運よく見つかるのでしょうか?こういった反例というものを見つけるのに何か目をつけるべきポイントがあればアドバイスいただきたいです。 あとこれとは違う問題で「または」「かつ」を含んだ必要十分について、 「P=1かつQ=1」というのは「P=1が成り立つ」し「Q=1が成り立つ」。だから「P=1である」という命題は成り立つ、ということです。だが逆は不可。P=1であるだけでQ=1とはいえないから。といったように教わりました。「または」ですと「P=1またはQ=1」は分けられない。どっちか分からないので。よって「P=1またはQ=1」なら「P=1である」はいえない。Q=1の可能性もあるから。逆に「P=1」なら「P=1またはQ=1」は成り立つ。ここは最初前述と矛盾するように感じましたが、どちらかが成り立てばいいので理解しました。 とこんな感じでやっています。 そこで問題ですが、 (a+b)(a-b)>0 かつ a+b>0 → a-b>0 (a,bは実数) 左側はまとめてa-b>0としてこれは成り立ちますが、逆に右から左の判定をするときには成り立たないとありました。これは右から左を見るときはバラバラにみないといけないということでしょうか?どうもこの辺が曖昧で... 長くなってしまいましたが、よろしくお願いいたします。
- みんなの回答 (2)
- 専門家の回答
お礼
なるほど!そう考えれば確かにすぐに反例は見つけられますね。でたらめに反例を見つける以前にそういう態度が必要だったのですね。後半についての質問も求めていた回答が頂けました。ありがとうございます!