放物運動の運動方程式を解く
問題は、
(1)放物運動の運動方程式を書け。(z軸とx軸の平面での運動)
(2)その方程式を解け。ただし初期条件は、t=0のときr(0)(ベクトル)=0=R0,v(0)(ベクトル)=V0=V0cosαex(単位ベクトル)+V0sinαez(単位ベクトル)
(3)軌道を求めなさい。
(4)αが何度の時x軸の到達距離が最大になるか。
です。
(1)はmx"=0,mz"=-mgと解けたのですが、(2)の答えがx=V0cosαt,z=-(1/2)gt^2+V0sinαtとなるのが解けません。どうやって解くのでしょうか。
また(3)の答えが-1/2・(g/V0^2)・(1/cos^2α)・x^2+tanαxとここまでは分かるのですが、次の
=-(1/2)・(1/V0^2)・(1/cos^2α)(x-(V0^2sin2α/2g))^2+(1/2)(V0^2/g)・sin^2α
という変形が分かりません。どうして分子のgが分母にいってしまったのか分かりません。もしかしたらノートの写し間違いかもしれないのですが、どなたか分かる方教えて下さい。あとできたら(4)も教えていただけるとありがたいです。
お礼
理解できました!ご丁寧にありがとうございます。