ベストアンサー 等速円運動の問題について 2014/06/23 23:37 角速度πで等速円運動している質点は 10sで何回転するか? という問題で答えはn=1/10 であってるのでしょうか みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー NemurinekoNya ベストアンサー率50% (540/1073) 2014/06/24 00:04 回答No.1 角速度π(m/s)ということは、一秒間に半周するということ。 だとしたら、10秒間で5周じゃないかい。 式で書くと 角度 = 角速度×時間 = π×10 = 10π(rad) 一周は2πだから 回転数n = 10π÷(2π) = 5周 質問者 お礼 2014/06/24 00:07 ありがとうございます! 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育自然科学物理学 関連するQ&A 等速円運動の問題です。 以下の問題を解いてみたのですが、分からない点があります。詳しい方ご教授をお願いいたします。 質量mの質点がxy平面内で半時計方向に半径rの等速円運動をしている。質点に働いている力は原点Oからの距離の2乗に逆比例する引力でその大きさはCを正の定数としてC/r2と表すことができる。 問1 質点の位置ベクトルrとして運動方程式を記せ。 (答)m・d2r/dt2=-C/r2 問2 角運動量lベクトルの時間微分を計算し、原点Oに対する質点の角運動量が保存されることを示せ。 (答)l=r×m・dr/dt 、 dl/dt= dr/dt×m・dr/dt+r×m・d2r/dt2=r×m・d2r/dt2=r×(-C/r2)・・・保存されない?? 問3 質点の速さ、角速度の大きさ、角運動量の大きさを求めよ。 (答)もし角速度ωが与えられていれればrωとも考えたのですが、問1を積分してdr/dtを求めるのでしょうか? 問4 運動の様子を簡単に図示し、質点の速度、質点に働く引力ならびに角運動量についてそれぞれの方向を書け。 (答)速度の向き:接線方向、引力:原点0の方向、角運動量:z軸正方向 問5 質点の位置エネルギーと力学的エネルギーそれぞれをC、rを用いて表せ。ただし位置エネルギーはr→∞のときに0となるようにする。 (答)分かりませんでした。。 等速円運動について これらの問題が分かりません;; 半径rの円周上を質量mの質点が半時計回りに等速円運動している。 時間t=0における中心角はα(rad)で中心角の角速度はω(rad/s)である。 (1)時間t(s)における中心角θはいくらか。 (2)時間tにおける質点の位置ベクトルを成分を使って表せ。 (3)時間tにおける質点の速度ベクトルを成分を使って表せ。 (4)時間tにおける質点の加速度ベクトルを成分を使って表せ。 (5)加速度ベクトルと位置ベクトルの間にどの様な関係があることがわかるか。 (6)(3)、(4)より速さvと加速度の大きさaを求めよ。 (7)(6)より、aとvの間にどの様な関係があることがわかるか(ωを消去)。また、F=maより、力Fはいくらか。 問題数多いですが、よろしくお願いしますm(__)m 等速円運動の微笑変化 質点が軌道半径r、角運動ωの等速円運動を考えます。 この運動に対して軌道半径に微小な撹乱δrを与えたとき、その撹乱が時間と共に成長しないための条件を求めよ どう解いてよいのかも分かりません・・ どなたか教えてください。よろしくお願いします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 等速円運動での張力について 等速円運動に関する問題について教えて下さい。 長さlのひもの一端を中心、もう一端に質量mのおもりを つけて等速円運動させたとき, 角速度をωとすると中心Oの 張力T0は, T0= mlω^2 で合っていますか? また, 中心からの距離がx(0<x<l)である点における張力T_1 の求め方を教えて下さい。 高校物理、等速円運動(問題) (問題) 図のように、長さlの糸の端に、質量mの重りをつけ、図のように重りを水平面内で等速円運動させる。 糸が鉛直直線となす角をなす角をθとするとき、円運動の周期を求めよ。という問題で、 最後に、速度ですから、ω^2=g/lcosθ⇔ω=±√(g/lcosθ)となりうるにもかかわらず、 T=2π/ωのところで、ω=√(g/lcosθ)として計算してあるのはなぜでしょうか? 等速円運動の速さ 10年ぶりに物理の教科書を読んでいてなかなか 面白いなと思っているのですが、等速円運動する 物体の速度を求める式が良く解らなくって頭のも やもやが晴れません。 物体が円周状を1回転するのに必要な速度をTとし 半徑r、速さをvでとすると、 (1) v=2Πr/T が成り立つ。 (2) ω=2Π(rad)/T (1秒間に回転する角度) (3) (1)・(2)からΠとrを消去すると v=rwとなる とあります。(3)のΠとrを消去するのところが 良く解らないのと、半徑×1秒間に回転する角度 で何故速度が求まるのかわかりません。 どなたか教えていただけないでしょうか? 力学の問題です.(等速円運動) 力学の問題です(等速円運動) 問題が難しくてよくわかりません. ご解説ください. 下の写真の図は地表すれすれに飛ぶ人工衛星の説明図である.半径R_+=6.4×10^6 m の地球の地表に沿って速さvで等速円運動する軌道の人工衛星の向心加速度a=v^2/R_+が重力加速度gに等しいとして,この人工衛星の周期Tを計算せよ. 答えが,5.1×10^3 s になるそうです. どうかご解説お願いします. 等速円運動 等速円運動 速度v=rω・・・円の接線方向 教えてほしいところ 何故、円の接線方向と決まっているんですか?? 等速円運動について ある物理の本に、 等速円運動の「加速度」の説明で、次の図がありました。 Vベクトルが時間の経過によって、V´ベクトルになったという図です。ωは角速度です。 そして、 Vベクトルの始点とV´ベクトルの始点を合わせた図が、ありますが、VベクトルとV´ベクトルのなす角が、ω⊿tであるとその本に書いてありました。 しかし、私にはなぜ、VベクトルとV´ベクトルのなす角が、ω⊿tになるのかわかりません。 なぜ、ω⊿tになるのですか? 等速円運動について 大学の基礎物理で指名されてしまい、前で説明しないといけないので 是非、次の問題に対する解答をわかる方は教えてください |r|=r=一定の等速円運動ではv-一定で速度は円の接線方向にあること、 速度の方向・向きが円運動をすることを微分を用いて示せ。このとき 加速度ベクトルはどうなるか。 わかる方は是非返信してください、お願いします PS 何故生物学科で物理をするのでしょう? 物理 等速円運動 問題 {}の選択技から正しいのを選択しなさい (1)円周上を等速円運動している物体の速度(ベクトル)の「大きさ」は2πr/tの速さに等しく、「方向」は物体の位置{を接点とした円周の接線、から円の中心に向かって引いた直線(半径)}の方向を向く。 (2)等速円運動している物体の速度の「大きさ」は{変化する、変化しない}また、速度の「向き」は{変化する、変化しない}よって、物体の加速度は{ない、ある}ので、物体に力は働いて{いる、いない} 解答お願いします 等速度運動と等速直線運動の違いについて 等速度運動と等速直線運動は同じ意味だと習いましたが、厳密にいえば異なると思います。 まず、等速度運動について考察していきます。 等速度運動とは、速度が一定の運動のことだと思います。 速度はベクトル量なので、速度が一定とは、速さと運動の向きが一定ということでしょう。 つまり、等速度運動とは、速さが一定かつ運動の向きが一定の運動ということになるでしょう。 次に、等速直線運動について考察していきます。 等速直線運動とは、速さが一定である直線上の運動のことだと思います。 直線上の運動は、方向が一定の運動と言い換えられることができるでしょう。 つまり、等速直線運動とは、速さが一定かつ運動の方向が一定の運動ということになるでしょう。 さて、改めて等速度運動と等速直線運動とを比較してみることとします。 等速度運動は向きが一定の運動ですが、 等速直線運動は方向が一定の運動です。 「向き」という概念と、「方向」という概念は、数学や物理学においては異なる概念であるはずです。 例をあげるのならば、東西は方向ですが、東や西は向きです。東西方向、東向き、西向きは正しい言い回しで、東西向き、東方向、西方向という言い回しは間違っています。 ということは、方向が一定であっても向きは2つ考えられるので一定でないはずです。 つまり、等速直線運動は厳密にいえば速さが一定の往復運動などの場合も考えられるのではないでしょうか? このように考えていくと、等速度運動と等速直線運動を同じ意味で用いるのは間違っているように思えてなりません。皆さんはどのように思われますか? (通じればいいという方ももちろんいらっしゃるでしょうが、個人的にはあまり共感できません) ※「速さを一定に保って向きを反対側に変えるためには、無限小の時間に無限大のエネルギーを要するので、現実的にはありえない。だから等速直線運動であっているんだ!」といわれる方もいるかもしれませんが、そう言ってしまうと、現実の世界には完全な直線運動は存在しないので直線運動は考えられない!と言っているのと同じであると思うので、やはり等速度運動と等速直線運動は異なる運動を示している考えるのが妥当であると思います。 ※等速円運動も、右に一回転、左に一回転を交互に繰り返し、速さが一定の運動などの運動も考えられるはずなので、私たちが普段、等速円運動と呼んでいる運動は、上記のように考えると、厳密にいえば等角速度運動と呼ぶべきなのではと思います。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 摩擦力による等速円運動 教科書に載っている静止摩擦力による等速円運動についてわからない ところがあるのですが、なぜこのとき静止摩擦力は円の中心向きに 発生するのでしょうか? 円板とその上の物体の位置関係をみると 摩擦力は等速円運動の速度と逆向きに発生するように思えてならないの ですが・・・ 等速円運動 等速円運動 滑らかな円錐面上での円運動、重力mgと垂直抗力Nの合力が向心力として働いている。 この場合、円運動の半径をr、速さをvとして、鉛直方向での力のつりあい式、水平面内での運動方程式をそれぞれ書きなさい。 解説では、等速円運動として解いていたんですが、なぜ、等速円運動だとわかるんですか?? 等速円運動の問題です。 等速円運動の問題です 加速度Aと半径Rが平行となることをしめせ 外積が0もしくは、内積が積そのものになるやり方でおねがいします。 等速円運動 等速円運動は何故 加速度があるのに等速なのですか。 等速円運動について (ttp://nyushi.yomiuri.co.jp/12/sokuho/kansai/2_7/butsuri/mon1.html)の問題で質問があります 解答は(ttp://www.yozemi.ac.jp/nyushi/sokuho/recent/kansai/2_7/index.html)にあるのですが (i)の(3)の解答にはv=√{2gr(1-cosθ)}とあるからこれはθの値によってvの値は変わるので等速円運動といえないのではないのですか? またもし等速円運動ではないなら(4)~(6)では 運動方程式mv^2/r=mgcosθ-Nと書いてありますが、 ma=mrω^2=mv^2/rの変換は等速円運動の時しか使えないはずなのにどうしてこのような運動方程式をたてられるのですか? ? 高専物理(等速円運動)の問題です。 初投稿です。 課題なのですが、全くわかりません。 現在冬休みのため、先生にもきくことができません。 どうぞよろしくお願いします。 軽くて伸びない糸に質量3.0kgの小球をつけ、なめらかな水平面上で角速度2.0rad/s , 半径1.5mの等速円運動をさせた。次の各問いに答えよ。ただし、円周率πは3.14とする。 (1)この小球が3.0周するのにかかる時間 (2)この小球の角速度を少しずつ増していったところ、糸の張力が50Nに達したとき、糸が切れた。 糸から離れた瞬間の小球の速さ。 高校物理、等速円運動 (問題)粗いターンテーブルの上に、質量mのPが置かれている。中心からPまでの距離はr、静止摩擦係数はμとする。ターンテーブルの角速度ωをゆっくり増していく時、Pが滑りださないためのωの最大値ω0を求めよ。 (疑問) (1)等速円運動では接線方向に速度が発生し、加速度は円の中心方向に発生しています。 物体は速度の向きに運動していますが、加速度は速度の大きさを変えることもありません。加速度は速度の向きを変えていますが、接線方向に物体が行こうとするのを加速度が中心を向くことで円運動させているのでしょうか? (2)摩擦力は運動を妨げる向きに発生するのですが、運動の方向というのは接線方向ではないのでしょうか? 等速円運動の問題です(高校) 学校で配られた実験用のプリントの問題なのですが、 等速円運動する物体の質量m[kg]、周期T[s]、回転半径r[m]、向心力f[N]とすると、 f=mr×(2π/T)の2乗 が成り立つ、という証明がよく分かりません。 解説では、(糸の長さをl[m]、平均の張力をF[N]) 『円運動の半径はr=lsinθ[m]であり、円運動の向心力はFsinθ[N]であるから結局 Fsinθ=mlsinθ×(2π/T)の2乗 よってF=ml×(2π/T)の2乗』 と書いてありましたが、『円運動の半径はr=lsinθ[m]』までは分かったのですが、それ以降がよく分かりませんでした。 宜しくお願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 自然科学 理科(小学校・中学校)化学物理学科学生物学地学天文学・宇宙科学環境学・生態学その他(自然科学) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ありがとうございます!