締切済み 微分方程式 2020/10/28 16:37 x’=-kx^n , x(0)=x_0 (t>0)の微分方程式が解けません。 みんなの回答 (1) 専門家の回答 みんなの回答 gamma1854 ベストアンサー率52% (320/607) 2020/10/28 16:45 回答No.1 nの条件を書いてください。・・・自然数とします。 x^(-n)*(dx/dt)=-k より、 1) n≠1 のとき、1/x^(n-1)=(1-n)*{A - kt}. 2) n=1 のときは、x(t)=A*e^(-kt). ---------- 初期条件を代入し、定数Aを決定してください。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 微分方程式 こんにちは^^ 微分方程式の問題でつまづいています。 m(d^2x/dt^2)=-kx^3 初期条件:t=0のときx=0、v=U という方程式なんですがどこから手をつけたらよいのか見当もつきません。 x=Asin(wt+δ) とおいたりしてみたのですが、どうにもx^3というのがやっかいです汗 一般解の導き方を教えてください。よろしくお願いいたします。 常微分方程式 常微分方程式の定義が良くわかりません。 ウィキペディアの常微分方程式の定義を見ますと、 F(t,x(t),x'(t),...,x(n-1)(t),x(n)(t))=0 と書かれています。 なお、x(n)はxのn階の意味です。 http://ja.wikipedia.org/wiki/%E5%B8%B8%E5%BE%AE%E5%88%86%E6%96%B9%E7%A8%8B%E5%BC%8F すると、x(t)のn乗や定数項が含まれる式は常微分方程式ではないのでしょうか。 よろしくお願いします。 微分方程式 x=x(t)に関する微分方程式 (dx/dt) = -2x^(2)+t^(-2) , t>0 であるとき v(t) = {x(t)-t^(-1)}^(-1)とおきv(t)に関する微分方程式作れとあるのですが 問題が解けずに困っています。 どなたか教えていただけないでしょうか 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 非同次微分方程式の特殊解について 非同次微分方程式の特殊解は Q(x)=Ax^n あるいは Q(x)=Ax^n + Bx^(n+1) +…(n次多項式の場合) ・特性方程式の解に0が無ければ、η(x)=kx^n + lx^(n+1) +…+m ・特性方程式が単解0をもてば、 η(x)=x(kx^n + lx^(n+1) +…+m) ・特性方程式が重解0をもてば… などη(x)の置き方がいろいろありますよね。 他にも、三角関数の時や指数関数の時など。 こういった特殊解は、覚え方などあるのでしょうか? 自力で丸覚えするしかないのでしょうか? 解き方は分かるのに、特殊解をη(x)=…なんだったっけかな…と思うことがしばしばあります。 覚え方があるのなら教えて下さい。 微分方程式について 微分方程式について。 yやdy/dxの形ならば解けるのですが ちょっと変わった形になると解けずに困っております。 回答お願いします。 1 未知関数x(t),y(t)に関する微分方程式 x´(t)=y(t), y´(t)=-x(t)を 初期条件x(0)=a, y(0)=bの下で解け。 2 x=x(t)を変数tのC^∞級関数とする。 このとき、 d^2x/dt^2 +(dx/dt)^2 -4=0 を解け。 3 tの関数x(t)が次の微分方程式を満たすとする x´+x^2+a(t)x+b(t)=0 ただしx´=dx/dtである。 ・x(t)=u´(t)/u(t)のとき、関数u(t)の満たす微分方程式を求めよ。 ・微分方程式 x´=x(1-x)の一般解を求めよ。 長いですが回答お願いします 微分方程式 t≧0で,x = x(t) に関する以下の微分方程式 (dx/dt) + (1/τ)x = (1/τ) cost が成り立つとき,以下の問いに答えよ。ただし,定数τは0ではない実数である。 (1) 微分方程式を解きなさい。ただし,x(0)=0とする。 (2) |τ|= 1 のとき,t → ∞ における(1)の解を求めよ。 よろしくお願いします。 ベッセルの微分方程式 テキストによると、円筒座標系での電磁場のマクスウェル方程式を磁場に関して解いて得られる方程式が f’’+1/x*f’+k^2*f=0 解はベッセル関数 AJ0(kx)+BY0(kx) A,Bは定数 しかしこの方程式は一般的なベッセルの微分方程式と少し違います。 x^2f’’+xf’+x^2f=0 x^2で割り算してるのはともかく、係数kの分だけ違うのです。これでもベッセルの微分方程式であり解はベッセル関数であると言えるのでしょうか? 偏微分方程式と常微分方程式 物質濃度をC、時間をt、座標をx、物質の分子拡散係数をνとすると分子拡散による物質濃度の時空間変化は以下の偏微分方程式によって記述される。これについて以下の問いに答えよ。 ∂C/∂t=ν((∂^2)C/∂x^2) (1)C(x,t)=X(x)T(t)と仮定することにより、X(x)およびT(t)に関する常微分方程式をそれぞれ導出せよ。 (2)(1)での2つの常微分方程式の一般解をそれぞれ求めよ。 (3)上記拡散方程式は一般に放物型と言われる偏微分方程式に分類される。これとは別の楕円型と言われる偏微分方程式を1つ、数式で記述せよ。 困っているのは(2)の問題です。 以下のようなwebサイトを見つけました。 http://www12.plala.or.jp/ksp/mathInPhys/partial/ これに沿って問題を解いていったとき、一般解をどのようにするべきか迷いが生じました。今回の問題では初期条件や境界条件はないため、一般解はλが正、ゼロ、負のとき全ての場合の一般解を求めなければならないということですか? 後もう1点、もしよければ、楕円型の微分方程式として有名な物理現象、あるいは式を教えていただけないでしょうか? ヨロシクお願いしますm(_ _)m 特に(2)の問題に関する質問、ヨロシクお願いします。。。 微分方程式の問題で・・・ m(d^2x/dt^2)=mg-kx この微分方程式の一般解の求め方がわかりません。 詳しく教えていただけると嬉しいです。 おねがいします 微分方程式がわかりません.教えてください. f(x)=cos2x + ∫[x_0] f(t)sin2tdt 連続な関数f(x)が上式を満たしているとき, 1.f(0)を求めよ 2.f(x)の満たす微分方程式を求めよ 3.2の微分方程式を解き,f(x)を求めよ という問題です.右辺にあるtの関数をどのようにしたらよいかわかりません 教えてほしいです. 偏微分方程式 f(t)は2回微分可能な関数であり、z(x,y)=f(3x-4y)が偏微分方程式zxx+zyy+z=0となるようなf(t)を求めよ。 というような問題で、zxxはzをxで2回偏微分したものを表しています。 手持ちの参考書には偏微分方程式についての記述がなく、どのように考えればよいのかわかりません。 ご回答よろしくお願いします。 微分方程式 微分方程式を解き方についての質問です。 dx/dt=(2a-3x)/(2a-x) (aは定数) という微分方程式なのですが、これはどういう手順で解いていけばいいのでしょうか?左辺と右辺にxとtを分けるというのはわかるのですが、その後どうしていけばいいかわかりません・・・。 どなたかよろしくお願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 微分方程式を解く問題が分かりません。 微分方程式を解く問題が分かりません。 次の微分方程式が解けません。 {(d^2)x}/{d(t^2)}+2ε(dx/dt)+(ω^2)x=0 ただしε<ωとする。また初期条件をt=0でx=0、dx/dtでv0とする。 が解けません。x=e^(αt)とおいて解いていくようなのですが・・・。 よろしくお願いします。 差分方程式と微分方程式 ======================================== 数列a[n]について a[n+2] - 2b * a[n+1] + a[n] = 0 (bは定数) が成り立っているとき x'' + k * x = 0 (kは定数) という形の微分方程式と等価である。(x'':xの2回微分) ======================================== らしいのです。 イメージは「等価」である気がするのですが、うまく理解できません。 どなたか、この場合の差分方程式と微分方程式のつながり部分(?)を表現していただけないでしょうか? 2階の微分方程式 こんにちは。現在、微分方程式に取り組んでいます。 おそらくとても単純な所で詰まってしまって、困っています。よろしくお願いします。 式(1) G=dx/dt=py-ax+i 式(2) F=dy/dt=qx-by+j を使って (1)G=F=0の時、x0、y0を求める (2)n=x-x0,m=y-y0とし、n(t),m(t)それぞれに対する2階微分方程式を求めよ という問題です。 (1)は連立方程式を解いて x=(bi+pj)/(ab-pq) y=(aj+qi)/(ab-pq) までは出せたのですが、これらをそれぞれx0,y0と考えてしまってよいのでしょうか? 「x,yの2階の微分方程式にする」ようなヒントがあったのですが、そのヒントでかえって混乱しています。 (2)はx0、y0で詰まってしまったので。。。止まっています。 すみませんが、よろしくお願いします。 微分方程式を満たすことを示す問題がわかりません>< 物理の問題でAは振幅 問題はX=asin√kt/m+bcos√kt/mの解がmX=-kx (Xはx方向の2回微分(加速を示す))の微分方程式を満たすことを示せ。というものなんですが、さっぱりわかりません><わかるひといたら教えてください。お願いします。 微分方程式 解きたい微分方程式があります。 x'=exp(x/t)+x/t これを解くということは一般解と特異解を求めることですよね。 両辺をtで積分して x=-exp(x/t)+logt このあとどう操作すればよいかわかりません。 どなたか教えて頂けませんでしょうか。 お願いします。 微分方程式の問題(4問)がわからないので教えていた 微分方程式の問題(4問)がわからないので教えていただきたいです。できれば途中式、解説などもお願いいたします 【1】、【2】微分方程式の一般解を求めよ 【1】 dy/dx+(x-2)/y=0 【2】 dy/dx+1/x*y(x)=e^2x 【3】、【4】微分方程式を求めよ 【3】 d^2y/dt^2 + dy/dt - 2y(t) = sin t 【y(0)=0、 y'(0)=0】 【4】 dq(t)/dt + q(t)/RC = sin 2t 【q(0)=0】 微分方程式の解き方が分からず、困っています。 現在、試験に向けて微分方程式の勉強をしているのですが、下記の問題の解き方が分かりません。 教科書を参考に(1)は変数分離系、(2)は同次形、(3)は線形で解こうとしましたが、どの問題も積分するところで複雑な式になってしまい、解けれません。 分かる問題だけでも良いのでアドバイス、解き方を教えてください。よろしくお願いします。 (1)次の微分方程式の一般解を求めよ dy/dx=y^2+1 (2)次の微分方程式の一般解を求めよ y'=(y/x)(log(y/x)+1) (3)次の微分方程式の解でt=0のときx=1の条件を満たすものを求めよ x'cost+xsint=1 微分方程式 すいません。 微分方程式 dx/dt=y dy/dt=t+0.1-x-(x-t)^{3} を解ける人いたら解いてもらえませんでしょうか?(数値解法でない方法で) 真解が知りたいです。 初期値は適当な値でいいので、t=0,x=4,y=1 でお願いします。 そもそも、これって真解求まるのかすらわかりません。 今、プログラムの課題で上記の微分方程式をおいらー法で解くプログラムを作ってるんですが、真解を求めて、その誤差を測りたいと思っている次第です。 よろしくお願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など