- ベストアンサー
数学2 ベクトル 高校数学
体積が1である四面体OABCがあり、三角形ABCの重心をGとし、線分OGをt :1-t (0≦t≦1)に内分する点をPとする。 直線APと平面OBCの交点をQ1、直線BPと平面OCAの交点をQ2、直線CPと平面OABの交点をQ3とする。四面体GQ1Q2Q3の体積Vをtで表せ。 よろしくお願いします。
- みんなの回答 (2)
- 専門家の回答
体積が1である四面体OABCがあり、三角形ABCの重心をGとし、線分OGをt :1-t (0≦t≦1)に内分する点をPとする。 直線APと平面OBCの交点をQ1、直線BPと平面OCAの交点をQ2、直線CPと平面OABの交点をQ3とする。四面体GQ1Q2Q3の体積Vをtで表せ。 よろしくお願いします。
お礼
ありがとうございました。 無事に解決いたしました。 OQ1:OM=2t:3-t