締切済み ただの積分のはずなんですが… 2004/08/26 23:05 『cosθ/(sinθ^2)』をθで積分したいのですがどうしてもできません。 どなたか教えて下さい。 みんなの回答 (1) 専門家の回答 みんなの回答 nabla ベストアンサー率35% (72/204) 2004/08/26 23:09 回答No.1 sinθ=xで置換積分をしてみましょう。 質問者 お礼 2004/08/26 23:16 とても早い回答ありがとうございました。 非常に助かりました。 通報する ありがとう 0 広告を見て他の回答を表示する(0) カテゴリ 学問・教育数学・算数 関連するQ&A 定積分の値 ∫cosφ*exp(A*cosφ+B*sinφ) dφ ∫sinφ*exp(A*cosφ+B*sinφ) dφ いずれも積分範囲は-π~+π この積分を計算することは可能でしょうか? 積分を教えてください。 こんな質問はしたくないのですが…ブラウン運動の初歩のところで ∫[-π~π]dk(cos(kx)-1)/(cos(k)-1) = 2π|x| という積分が出てくるのですが、これがうまく導出できません。また、∫dk(cos(2k)-1)/(cos(k)-1) の不定積分をを私が計算すると2sin(k)+2k になりましたが、maximaに計算させると 3 SIN (k) ------------- + 1 2 SIN(k) (COS(k) + 1) (D1) 2 (ATAN(----------) + --------------------------) COS(k) + 1 3 2 SIN (k) 2 SIN(k) ------------- + ---------- 3 COS(k) + 1 (COS(k) + 1) SIN(k) ATAN(----------) COS(k) + 1 SIN(k) COS(k) + 1 - 8 (- ---------------- - --------------------------------) - ---------- 4 2 SIN(k) 4 SIN (k) (COS(k) + 1) (------------- + 4) 2 (COS(k) + 1) になりました。maximaで計算結果を簡単な形で表現させることはできないのでしょうか。 積分 (sinθ)^4/(cosθ)^9 の積分を教えてください。 積分 ∫〈sinθ/{3+4cos^2(θ)}〉dx (積分区間:π/3→π/2) これどうやればいいんですか?? 線積分 原点を中心とする半径1の円に反時計回りに向き付けを与えた閉曲線をcとするとき、次の線積分を求めよ。 ∫c (x^2+y^2)dx + xydy という問題なのですが、x=cosθ,y=sinθ,0≦θ<2πと置き、積分を進めていくと、 ∫ (cosθ)'+sinθcosθ(sinθ)' dθ =0+1/2∫(cos2θsinθ+sinθ)dθ =0 になってしまったのですが、答えは0にはならないですよね?どこが違うか教えてください。お願いします。 球面上の積分 球面上の積分 単位球S上で、以下の関数を積分することを考えております。 f =1/(a-bx) つまり、 ∫∫∫1/(a-bx)dxdydz しかしながら、この積分の仕方が分かりません。 ヒントだけでもいいので、教えてください。 ちなみに、 x=cosφcosθ と変形し、 ∫∫sinθ/(a-bcosφcosθ)dφdθ を 0≦φ≦2π、0≦θ≦π で積分するところまで考えたのですが、この先の計算方法が分かりません(分子にはsinθしかなく、sinφがないので)。 広義積分 広義積分の問題なのですが,変数変換をすると,積分範囲がどうしても0→0になってしまいます…。 問題は D={(x,y)∈R^2|ε^2≦x^2+y^2≦1} lim(ε→0) ∬{(x^2-y^2)/(x^4+y^4})dxdy という問題なのですが,これを x=rcosθ,y=rsinθ,ヤコビアン=r D'={(r,θ)∈R^2|ε≦r≦1,0≦θ≦2π} ∫(1/r)dr∫{(cos^2θ-sin^2θ)/(cos^4θ+sin^4θ)}dθ =∫(1/r)dr∫{cos2θ/((cos^2θ+sin^2θ)^2-2cos^2θsin^2θ)}dθ =∫(1/r)dr∫{cos2θ/(1-(sin2θ)^2/2)}dθ =∫(1/r)dr∫{2cos2θ/(2-(sin2θ)^2)}dθ ここでt=sin2θと変数変換しようとしたのですが, そうすると積分範囲が0→0になってしまします。。。 どこか間違っているのでしょうか?? どなたか解説お願いします。 積分 sin(u)cos(2u)の積分お願いします。 範囲は0~π/2です。 積分 ∫ sin(x)/sin(x/2) dx の積分ってどうやるんですか x/2=yとおいて ∫ sin(2y)/sin(y) 2dy からsin(2y)=2sin(y)cos(y)を使って 4∫ cos(y) dy では変ですよね? 積分 4π∫1-cos(2x-π/3)/2dx を積分すると 4π[x/2-(sin(2x-π/3))/4] になるそうですが どうしてそうなるかおしえてください 分母が2だから2を積分すると0だから すべて0になると思うのですが 積分 積分の問題なのですがわからないので 教えてください! (1) ∫sin2x・cos4xdxなのですが 置換積分をすれば解けると思うのですが…。 何をtとおいて計算すればいいのですか??? ヒントをください!! 積分範囲は0から3π/4 積分範囲は0から3π/4 1/2π?100sinθdθ =100/2π*[-cosθ] =50/π*[(-cos3π/4)-(-cos0)] =50/π*(1/√2+1) 上記の計算であっているでしょうか? 積分 こんばんは。 ∫sin h^-1 x dx (hyperboric sine) の積分なのですが、とりあえず解いてみましたが自身がありません。間違えている箇所ありますでしょうか? まづ部分積分で ∫(x)'sin h^-1 x dx = x (sin h^-1 x) - ∫x/√(1+x^2) dx ここで ∫x/√(1+x^2) dx は x=sin t とおいて dx = cos t dt ∫sin t dx となり =-cos(sin^-1 x) よって ∫sin h^-1 x dx = x (sin h^-1 x) + cos(sin^-1 x) どうでしょうか? 積分ができずに困っています。 ∫{sin(2x)}4.cos(2x)dx の積分ができずに困っています。 やり方が分かる方がいましたら、教えてください。 ({sin(2x)}4 は{sin(2x)}の4乗という意味です。) 実数でもできる複素数積分 (1+sinθ)/(5+4cosθ)を0から2πまで積分しなさいという問題なんですが、実数で積分するのは難しいのでこれを複素数を使って積分します。 留点がz=-1/2となってRes(-1/2)を求めてそれに2πiをかけて積分をしたんですが答えがπ(4/3-i)になりました。答えにiが出てきてしまいました。これは明らかに間違ってますよね?(1+sinθ)/(5+4cosθ)の積分は実数で表されるはずなんですが、どうしても計算がうまくいきません。 よろしくお願いいたします。 積分の問題です こんにちは。 ∫[-1,1] {x*(4x^3 - 3x)}/√(1-x^2) dx を計算せよ という問題の答えを教えていただきたいです。 自分でやってみたところ、 x=cosθ(0≦θ≦π)と置いて、4x^3-3x=cos3θとなることを利用すると、与式は ∫[0,π] cosθcos3θdθ =3∫[0,π]sinθsin3θdθ (部分積分) =9∫[0,π]cosθcos3θdθ (もう一度部分積分) となるため、結局答えが0になってしまうのですが、これで合っているでしょうか? どうぞよろしくお願いします。 積分の計算 基本的な計算だと思いますが、分からないので教えてください 本来は定積分ですが、積分範囲の部分ははぶきます ∫cos2θ・(-sinθ)dθという式で 答えを見るとcos2θの部分を(2cos^2θ-1)と変形し、-sinθを(cosθ)'と変形して∫(2cos^2θ-1)・(cosθ)'dθと書き換えてましたが、その後がわかりません。 出来るだけ詳しく書いていただけると助かります。 sinθ・cosθの積分に付いて π/2 ∫(sinθ・cosθ)dθ 0 π/2 =1/2∫(sin2θ)dθ ・・・(1) 0 π/2 =1/4[-cos2θ] ・・・(2) 0 =(1/4)(1+1) =1/2 これは、置換せずに積分できたと言う理解で良いのでしょうか? それとも、間違いでしょうか? (1)で、2θ=φ と置換した場合、(2)は π =1/4[-cosφ] 0 =1/2 式の表し方で迷うことが良くあります。 次の定積分の求め方 次の定積分の求め方で困っております。 ∫[0→π/3]:sin^3θcosθdθという問題です。 これは置換積分法を使うのでしょうか? どなたか解き方を教えて頂ければ幸いです。よろしくお願いします。 三角関数の積分 sin^2(x)を積分するとき、倍角の公式を用いて sin^2(x)=(1-cos(2x))/2 として積分計算できますが、 これ以外の方法でsin^2(x)を積分するとはできるのでしょうか? (部分積分を使ってみたのですが元に戻ってしまいうまくいきません。) 注目のQ&A 「前置詞」が入った曲といえば? 緊急性のない救急車の利用は罪になるの? 助手席で寝ると怒る運転手 世界がEV車に全部切り替えてしまうなら ハズキルーペのCMって…。 全て黒の5色ペンが、欲しいです 長距離だったりしても 老人ホームが自分の住所になるのか? 彼氏と付き合って2日目で別れを告げられショックです 店長のチクチク言葉の対処法 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど
お礼
とても早い回答ありがとうございました。 非常に助かりました。