ベストアンサー 積分ができずに困っています。 2009/07/10 10:37 ∫{sin(2x)}4.cos(2x)dx の積分ができずに困っています。 やり方が分かる方がいましたら、教えてください。 ({sin(2x)}4 は{sin(2x)}の4乗という意味です。) みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー info22 ベストアンサー率55% (2225/4034) 2009/07/10 11:22 回答No.1 こういう基本的な簡単な問題は式を見たらすぐ気がつかないとダメですね。4乗でももっと多いべき乗でもやり方は同じです。 ヒント) ∫[{sin(2x)}^4]cos(2x)dx =(1/2)∫[{sin(2x)}^4]{sin(2x)}'dx と考えれば後はできますね。 覚えておくべき公式) F(x)=∫f(x)dx+C とすると ∫f(g(x))g'(x)dx=F(g(x))+C です。 f(x)=x^4,g(x)=sin(2x)とおいてみてください。 質問者 お礼 2009/07/11 09:55 自分でなんとか解くことができました。 ありがとうございました^^ 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 積分 こんばんは。 ∫sin h^-1 x dx (hyperboric sine) の積分なのですが、とりあえず解いてみましたが自身がありません。間違えている箇所ありますでしょうか? まづ部分積分で ∫(x)'sin h^-1 x dx = x (sin h^-1 x) - ∫x/√(1+x^2) dx ここで ∫x/√(1+x^2) dx は x=sin t とおいて dx = cos t dt ∫sin t dx となり =-cos(sin^-1 x) よって ∫sin h^-1 x dx = x (sin h^-1 x) + cos(sin^-1 x) どうでしょうか? 不定積分 ∫(sin x/2 + cos x/2)^2 dx で、次の式が =∫(sin^2 x/2 + 2sin x/2 ・cos x/2 +cos^2 x/2)dx これはただ2乗して、展開しただけですよね、 その次が=∫(1+sinx)dx となるんですが・・・ なぜ、1+sinxと置き換えられるのでしょうか 積分 4π∫1-cos(2x-π/3)/2dx を積分すると 4π[x/2-(sin(2x-π/3))/4] になるそうですが どうしてそうなるかおしえてください 分母が2だから2を積分すると0だから すべて0になると思うのですが 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 定積分の応用 定積分の応用 あるサイトで見た問題の解き方ですが, ∫[0→π/2] sin x / (sin x + cos x) dx = ∫[0→π/4] sin x / (sin x + cos x) dx + ∫[π/4→π/2] sin x / (sin x + cos x) dx ここで右側の∫[π/4→π/2] sin x / (sin x + cos x) dxを = ∫[0→π/4] sin(π/2 -x) / (sin(π/2 -x) + cos(π/2 -x)) dx としていました. 質問ですが x をπ/2 - xに置き換える,というようなことはしても良いのでしょうか? 普通ならt = π/2 -xにして違う文字に置き換えますよね…? (t = … で計算したら答えにたどりつけませんでした) 答えは ∫[0→π/4] 1 dx = π/4 になっていました. 積分 1/sin^3x 問題 積分 1/sin^3x 問題 ∫{1/(sin x)^3}dxについて 調べた結果、sinx=cos(x-π/2)として、θ=x-π/2と置換する。 ∫{1/(cos(x-π/2))^3}dx (x-π/2)=θとおくと、dθ/dx=1よりdθ=dx ∫{1/(cosθ)^3}dθとなります。 あとは、1/cos^3xの積分と同じで、 1/2(sinθ/cos^2θ)+1/4log(1+sinθ/1-sinθ)+C のθをx-π/2に戻すと、 1/2(sin(x-π/2)/cos^2(x-π/2))+1/4log(1+sin(x-π/2)/1-sin(x-π/2))+C で答えは合っているのでしょうか? cos^2(x-π/2)=sin^2xとしなければいけないのでしょうか? ご回答よろしくお願い致します。 定積分についての質問です。 定積分についての質問です。 問題は ∫(0~1) {Sin^-1 (x)}^2 dx (アークサイン x の2乗) です。 部分積分も置換積分も通用しません! 解る方よろしくお願いします。 積分 ∫ sin(x)/sin(x/2) dx の積分ってどうやるんですか x/2=yとおいて ∫ sin(2y)/sin(y) 2dy からsin(2y)=2sin(y)cos(y)を使って 4∫ cos(y) dy では変ですよね? 複素関数の積分 答えられるのだけでいいのでどなたか是非お願いします;; (1)次の積分(余弦、正弦を含む積分)を計算過程を示して求めよ (1)∫0~π dθ/k+cosθ (k>1) (2)∫0~2π 1+sinθ/3+cosθ dθ (3)∫0~π cosθ/17-8cosθ dθ (2)次の積分(無限大の区間の特異積分)を計算過程を示して求めよ (4)∫-∞~∞ dx/(1+x^2)^2 (5)∫-∞~∞ x^3/1+x^8 dx (6)∫-∞~∞ x^2/(x^2+1)(x^2+4) dx tan の部分積分 いつもお世話になっています。 tan x の積分をしたくて、新しく覚えた部分積分というのを使ってみると ∫tan x dx = ∫(sin x)/(cos x) dx = ∫(-cos x)' (1/cos x) dx = (-cos x)(1/cos x) - ∫(-cos x) (sin x/cos^2 x) dx = -1 + ∫tan x dx と、おかしなことになりました。 部分積分の公式の元に戻って (fg)' = f'g + fg' と考えると f(x) = -cos x g(x) = 1/cos x となって、左辺が定数の微分になるので (-1)' = tan x - tan x だからあってます。 定数を f(x), g(x) に分解したあたりが怪しいような気がするのですが、 最初にやった部分積分の式で何をどうしたのがいけなかったのかが説明できません。 いったい何がだめだったのでしょうか? よろしくお願いします。 積分計算 以下の積分計算、間違っているのですが、どこで間違っているのかご指摘お願いいたします。 ∫{(sin x)^3・cos x }dx cos x = t とおくと、 -sin x ・ dx = dt よって、与式は ∫-(sin x)^2 ・ t ・ dt = ∫ (t^2 - 1)t・dt = 1/4 (t^4 - 2t^2) = 1/4 (cos x)^2 {(cos x)^2 -2} 部分積分法で定積分を求めたいのですが~ 問題集を解いていますが、3つ分からない問題がありました。 部分積分法で求めた時の途中式~答えまでの流れを教えてください。 お手数ですが、宜しくお願いします。 (1) ∫(0→π/2) x cos2x dx (2) ∫(0→π/4) x^(2) sin2x dx (3) ∫(0→2π) e^(x) cos x dx 答え (1) -1/2 (2) π/8 - 1/4 (3) { e^(2π)-1 } / 2 積分(↓下の質問は間違えました) ∫ sin(x)cos(x) dx これを sin(x)cos(x)=(1/2)sin(2x) にして積分すると -(1/4)cos(2x) になります。しかしxが小さいとして検算すると 符号が合いません。値も変なのです。 行き詰まってパニクってます 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 積分の問題です こんにちは。 ∫[-1,1] {x*(4x^3 - 3x)}/√(1-x^2) dx を計算せよ という問題の答えを教えていただきたいです。 自分でやってみたところ、 x=cosθ(0≦θ≦π)と置いて、4x^3-3x=cos3θとなることを利用すると、与式は ∫[0,π] cosθcos3θdθ =3∫[0,π]sinθsin3θdθ (部分積分) =9∫[0,π]cosθcos3θdθ (もう一度部分積分) となるため、結局答えが0になってしまうのですが、これで合っているでしょうか? どうぞよろしくお願いします。 積分の問題 ∫log(1+x)/(1+x^2) dx (x;0~1までの定積分) 上の問題がわかりません。x=tanθと置き、 ∫log(1+tanθ)dθ (θ;0~π/4) とまではしてみたのですがここから先がどうしてもうまく解けません。 sinθ+cosθ=√2 sin(θ+π/4) , sin(π/2-θ)=cosθ を利用するらしいのですが、どのようにして解けばいいのでしょうか? どなたかわかる方、教えていただけたら幸いです。 よろしくお願いします。 次の積分・・・ 次の積分ってどのようにしてやればいいのですか? ∫[-∞,∞] cos(bx)/(x^2+a^2) dx ∫[-∞,∞] sin(bx)/(x^2+a^2) dx a,b>0 複素積分を使うのでしょうか? どなた教えてください、よろしくお願いします。 三角関数の積分について ∫sin^2(x)cos(nx)dx n=0,1,2,3・・・ ∫sin^2(x)cos(nx)dx n=0,1,2,3・・・ 積分区間は0~2π という問題なのですが、どうやったらいいかまったくわかりません。 よかったら指針などでもよいのでご教授お願いします。 積分∫[0→1]√(1-x^2)dx=π/4 定積分∫[0→1]√(1-x^2)dx=π/4 この計算の仕方が分かりません。 x=sinθとおく。dx=cosθdθ。x[0→1]がθ[0→2/π]になる。 ∫[0→1]√(1-x^2)dx=∫[0→2/π]√cos^2θdθ ここまでは合ってますか? 次に半角の公式を使って(この半角の公式とやらがよく分からないのですが)1/2∫[0→2/π]1+cos2θdθとなり =π/4となる様です。計算の説明を分かりやすくお願い致します。 また、π/4 は 45°で、cos(π/4)=1/√2、sin(π/4)=1/√2 ですが、それとの関係はどうなるのでしょう? 不定積分と定積分を求めよ この問題教えてください。 不定積分と定積分を求めよ。(2)は上端にπ/6下端に0です。 (1)∫cos3xcos^(2)x dx (2)∫(π/6) cos^(2)x dx (0) (3)∫xe^(x2) dx (4) ∫cos^(2)xsinx dx (5) ∫1/6-2x dx ある積分計算の違和感について質問です。 ある積分計算の違和感について質問です。 【問題】 関数sin(x)cos(x)を区間[-π,π]で定積分した値を求めよ。 Int_[-π,π]{sin(x)cos(x)}dx 以上の計算について、次の置換積分による計算は数学的に正しいでしょうか? 積分区間が0になってしまうところに違和感がありますが、 正しく導けている??? 数学的に何が起きているのでしょうか? 【解答】 t=sin(x)とおく。 このとき、dt = cos(x)より sin(x)cos(x)dx = t dt また,x : -π → π のとき t : 0 → 0 したがって、 Int_[-π,π]{sin(x)cos(x)}dx =Int_[0,0]{t}dt =0 sin(x)cos(x)が奇関数であることや、2倍各の公式sin(x)cos(x)=sin(2x)/2を利用した方法でも答えは0であることはあってるのですが…。 よろしくお願いします。 線積分 原点を中心とする半径1の円に反時計回りに向き付けを与えた閉曲線をcとするとき、次の線積分を求めよ。 ∫c (x^2+y^2)dx + xydy という問題なのですが、x=cosθ,y=sinθ,0≦θ<2πと置き、積分を進めていくと、 ∫ (cosθ)'+sinθcosθ(sinθ)' dθ =0+1/2∫(cos2θsinθ+sinθ)dθ =0 になってしまったのですが、答えは0にはならないですよね?どこが違うか教えてください。お願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
自分でなんとか解くことができました。 ありがとうございました^^