• ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:装置の各脚にかかる荷重を計算したい)

装置の各脚にかかる荷重を計算したい

このQ&Aのポイント
  • 半導体製造装置の設計をしております。装置は直方体で、底面の各角にアジャストフット(脚)を付属しています(計4本)。設置場所の床面耐荷重以内かの判定をするために、アジャストフット4本それぞれにかかる荷重を算出したいのですが、回答を出せず投稿させていただいた次第です。重心位置と装置重量から算出するためのヒントをいただけないでしょうか。よろしくお願いいたします。
  • 装置重量と各脚から重心までの距離比を利用して荷重を算出する方法を考えています。アジャストフット4本のそれぞれにかかる荷重を求めるためには、まず装置重量と各脚から重心までの距離を計算します。そして、各脚から重心までの距離比を用いて、各脚にかかる荷重を算出します。この方法を試してみる予定です。ご意見やアドバイスがありましたら、ぜひお教えください。
  • 装置の各脚にかかる荷重を算出するために、装置重量と各脚から重心までの距離比を使用する方法を検討しています。具体的には、各脚から重心までの距離比を計算し、重心位置に応じた荷重を各脚に分配することで、各脚にかかる荷重を求めることができます。この方法はアジャストフットの高さ調整によって対応できる現実的な手段となります。ご意見やアドバイスがありましたら、ぜひお知らせください。

質問者が選んだベストアンサー

  • ベストアンサー
noname#230359
noname#230359
回答No.3

交叉はり↓は不静定問題であるから、たわみの解析なしには求解できない 従って反力を出すためには、剛性→というより剛比等が重要になってきます さてその剛度とか機械設計では余り聞かないが、I / L でこの比を剛比と言う つまり、部材間剛比により荷重分担が決まるのであるから、同じ材質であって 断面形状も同じであるならば、スパン L が小さい程、荷重分担が大きくなる。 回答(2)ははは氏は簡潔に言い過ぎだがw 相当に的を得ていていると言えます 実際には斜めに計ると、断面二次モーメント I も少し変わるから幾分かは違う 剛性を考慮しないということは非現実的であるから、結果もそれなりになる 仮に剛体と考えれば↓図のように簡略化されたモデルに置き換えられると思う たわみを無視できるのだから、Y方向に移動しても何ら影響は無い筈である これならばシーソーと同じなので、机上の計算は更に容易に計算できるだろう ---------------- |●   G         ●|  ●:アジャストフット ----------------    G:重心位置 厳密に計算できるとしたら、弾性基板上における等分布荷重を受ける平板とし ゴム等を敷板の下にした場合には計算できるように思えますが、計算式自体が 非常に難しそうである。重量物の敷板の計算というのもヘルツ応力と相まって 実は難しい問題なのだろうと思う。実務的には実物に勝る結果は生まれないし 如何に大変な計算をして算出できたとしても余り意味が無いというところです

参考URL:
http://www.fastpic.jp/viewer.php?file=9466310585.jpg&ps=user
noname#230358
質問者

お礼

アドバイスありがとうございます。 ---------------- |●   G         ●| ----------------  上図で考えてみます。  

noname#230358
質問者

補足

回答ありがとうございます。 剛性やたわみなどを考慮せずに、単純に解くことは無理なのでしょうか? 質問を言い換えますと、4本脚が出た剛体の椅子があります。剛体のため たわみなど一切ないものとします。 椅子の座面中央ではなくちょっとズレた位置に荷重をかけたとき、それぞれの脚に かかる荷重を算出したい・・・ということなのですが・・・。

その他の回答 (6)

noname#230359
noname#230359
回答No.7

うつつの頭で妄想中 AG=BG=CG=DG のとき 各足にかかる重量は 25% である たぶんモーメントなんかを考えてうにゃうにゃやると うにゃうにゃになって うんやうにゃになるのだろうが Gと各足の総合加重は等しいはずなので うつなのでうまく説明できないww AG+BG+CG+DG=100% になるはずなんで 各足にかかる重量は 上記式を変形させれば きっとでるはずさー どうせ後で安全率かけてしまうので 大雑把でもいい 私なら 各足にかかる荷重を100% と考えてしまうが 静加重なら それですでに安全率kがかかってるから

noname#230359
noname#230359
回答No.6

私も素人の、たわごとです。 以前は、6脚でしたが2脚少ないのに・・・。 解決済みでは、なかったんでしょうか??? http://mori.nc-net.or.jp/EokpControl?&tid=261667&event=QE0004 >ウイリー まったく同感ですね。

noname#230358
質問者

補足

ご指摘の通り、以前は6脚でした。 内容をご覧いただきますとお分かりの通り、結論は装置を6分割してそれぞれの 重量を算出するというものでした。(結果としてはあいまいさを含む) 今回は4脚にすることで構造が単純化され、重心位置と重量と脚位置で計算出来ないもの かと思い再投稿させていただいた次第です。

noname#230359
noname#230359
回答No.5

素人のたわごとです アジャストフットの長さを調整する前の段階では水平が出てませんよね 最悪、2点接地になると思いますが? その時に、床にめり込んだりする事は考慮しなくて良いのでしょうか? 例えば、話はぶっ飛んでアレですが 手押し台車とかありますよねキャスタ付きのヤツ http://www.monotaro.com/g/00186317/ こんなヤツで、玄関引き戸の所を通過する場合 所謂、ウイリー走行させますよね? 当然ながら全荷重は2輪に掛かりますよね? つまり、キャスタ強度は2輪で設計しますよね? ウイリーさせただけでキャスタが壊れてたら怒りますよね?

noname#230358
質問者

補足

ご指摘ごもっともです・・・ 床面はエンドユーザー様の範囲ですが確かに考慮すべき内容だと思います。

noname#230359
noname#230359
回答No.4

装置の剛性が∞にあるとすれば 単にモーメントの釣り合いで解けますよ。 ---------------- |●A            ●|B ●:アジャストフット |               |  G:重心位置 |               | |     G         | |●C            ●|D ---------------- ただし、この位置に重心があった場合△ACDか△CBDのどちらかで計算 またはその合成になります。 これのCの位置に原点を置いたXY軸を仮定して A=(0,Ya),B=(Xd,Ya),D=(Xd,0),G=(Xg,Yg)とすれば X軸回転モーメント GYg-(A+B)Ya Y軸回転モーメント GYg-(D+B)Xd の連立方程式を解けば良いだけです。 実際の解は一意に決まりませんが、Bの脚を使わないとすればB=0 X軸回転モーメント GYg-AYa Y軸回転モーメント GYg-DXd で一意に決まります。 これでA,D点の荷重が決まれば、C=G-A-D でC点の荷重を求めることができます。 >X軸回転モーメント GYg-(A+B)Ya = 0 >Y軸回転モーメント GYg-(D+B)Xd = 0 >X軸回転モーメント GYg-AYa = 0 >Y軸回転モーメント GYg-DXd = 0 の誤記です。

noname#230358
質問者

補足

回答ありがとうございます。 ちょっと、自分で整理して考えてみます。

noname#230359
noname#230359
回答No.2

無図が強い計算を吹っ飛ばして AG BG CG DG の距離の比でいいんでないかい と うつの頭は言ってます 単純 ヒント          G     ーーーーーーーーーーーーーーーーーーーー △                 △  A                  B 50%                50%               G ーーーーーーーーーーーーーーーーーーーー △                 △  A                  B 25%                75% これは理解できると思います ここから次元をあげてけばいいのです と うつの頭が言ってます

noname#230358
質問者

補足

回答ありがとうございます。 距離の比も考えましたが、うまくいきませんでした。 何と何の比でお考えでしょうか。 例えば、Aの荷重を求めるときは・・・  AG/(AG+BG+CG+DG) ではないですよね。。。 もしくは、  (BG+CG+DG)/(AG+BG+CG+DG) でもないですよね。。。 よく分からないのです・・・ 質問に追記してみました。 ははは様のお考えと異なりますか?

noname#230359
noname#230359
回答No.1

3本足ならば、機械の質量、重心位置 及び 脚の位置の情報から、それぞれ の脚にかかる荷重を一意に決定できます。しかしながら、4本足の場合は、 不静定構造なので、機械の質量、重心位置 及び 脚の位置の情報だけでは、 各脚に加わる力を決定できません。アジャストフットの調整次第で、それ ぞれの脚に加わる力は変化します。 ---------------- |●A            ●|B ●:アジャストフット |               |  G:重心位置 |               | |     G         | |●C            ●|D ---------------- それぞれの脚に加わる力が変化するといっても、無制限に変化する訳では ありません。ご呈示の図から判断して、脚ABD又は脚ABCの3点で機械 を支えることはできません。従って、脚ACD又は脚脚BCDの3点で 機械を支える状況を考えれば、それぞれの脚にかかる最大荷重を評価でき ることになります。如何様な調整をしようとも、各脚にかかる荷重は、 先に計算した値以下となりますから、設計の妥当性確認は可能と思います。 限りなく平面・水平な床面に設置したとしても、アジャストフットの調整次 第で各脚にかかる荷重は変化します。不静定とは、そのような状態を表す 状態を表します。 3本脚で支持した場合は、静定問題ですから、答えは確定できます。 ご自身でweb検索すれば、答えに到達できると思います。 たぶん、このような回答をしておくと、3本脚の荷重分配について、親切な 回答者さんがご所望の答えが書いてあるURLを紹介して下さるように想像し ます。 >そのような状態を表す状態を表します。 日本語がおかしくて失礼しました。意味を酌み取って下さることを期待します。

noname#230358
質問者

お礼

自分なりに検索した結果が、ここへの投稿になりました。 もう一度検索してみます。 ご丁寧に回答をいただき、ありがとうございました。

noname#230358
質問者

補足

早速のアドバイスありがとうございます。 実際の設置具合を考慮しますと、確かに4本の場合アジャストフットの調整 具合で変化すると思いますが、あくまでも机上の理想設置状態で算出する わけにはいかないでしょうか。  ※限りなく平面・水平な床面に設置するイメージで・・・ もしくは、3本脚の場合の算出方法もよく分からないため、ご教示いただけると助かります。

関連するQ&A