S= ∫∫[D] dxdy=∫∫[3x^2+5y^2<=15] dxdy
=4*∫∫[3x^2+5y^2<=15, x>=0,y>=0] dxdy
=4*∫∫[3x^2/5+y^2<=3, x>=0,y>=0] dxdy
=4*∫∫[y^2<=3(1-x^2/5), x>=0,y>=0] dxdy
=4*∫∫[0<=y<=sqrt(3(1-x^2/5)), 0<=1-x^2/5<=1] dxdy
=4*∫∫[0<=y<=sqrt(3(1-x^2/5)), 0<=x<=sqrt(5)] dxdy
=4*∫[0<=x<=sqrt(5)] { ∫[0, sqrt(3(1-x^2/5)] dy} dx
=4*∫[0,sqrt(5)] sqrt(3(1-x^2/5)) dx
x=sqrt(5) sin(t) 置換積分, dx=sqrt(5) cos(t) dt, x:0~sqrt(5) ⇒ t:0~π/2.
S=4*sqrt(3) ∫[0,π/2] sqrt(1-(sint)^2) sqrt(5) cost dt
=4*sqrt(15) ∫[0, π/2] cost cost dt
=2*sqrt(15) ∫[0, π/2)] (1+cos(2t)) dt
=2*sqrt(15) { [t+(1/2)sin(2t)] [0, π/2] }
=2*sqrt(15) {π/2+(1/2)sin(π)}
=π*sqrt(15) ... (Ans.)
お礼
ありがとうございます、解決しました!