ベストアンサー ベクトル場の線積分についての質問です。 2016/07/01 19:33 ベクトル場の線積分についての質問です。 原点O(0,0,1)を通りP(1,1,1)を伸びる直線Cに沿って、ベクトル場A=-x^2i+2xzj+y^2kの線積分を求めよ っという問題なのですが、この積分範囲は本当に0~1なのでしょうか? 線積分は線の長さを求めるのだから直線Cという無限に伸びる線の線積分はパラメータで表示されるため0~tが積分範囲となると思ったのですがこれは間違った考え方なのでしょうか?もし誤った考えならばなぜなのかを教えて頂きたいです。 画像を拡大する みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー info222_ ベストアンサー率61% (1053/1707) 2016/07/03 19:24 回答No.2 >原点O(0,0,1)を通りP(1,1,1)を伸びる直線Cに沿って、ベクトル場A=-x^2i+2xzj+y^2kの線積分を求めよ は 「原点O(0,0,0)からP(1,1,1)まで伸びる直線経路Cに沿って、ベクトル場A=-x^2i+2xzj+y^2kの線積分を求めよ」 ということでしょう、積分経路はO(0,0,0)が始点、P(1,1,1)が終点です。 なので積分経路C上の点をパラメータ表示すると r=(x,y,z)=(t,t,t)=ti+tj+tk dr=dxi+dyj+dzk=(i+j+k)dt となります。この点を積分経路に沿ってOからPまで線積分するにはtを使ってパラメータによる積分区間は[0,1]となります。 >線積分は線の長さを求めるのだから直線Cという無限に伸びる線の線積分はパラメータで表示されるため0~tが積分範囲となると思ったのですがこれは間違った考え方なのでしょうか? 間違いです。 Oを始点、Pを終点とする線分OPを積分毛糸とするベクトル場Aの線積分です。つまりAとdr=dxi+dyj+dzkとの内積をとって、OからPを結ぶ線分OPに沿って積分すれば言い訳です。 >もし誤った考えならばなぜなのかを教えて頂きたいです。 ベクトル場Aでの線積分は位置ベクトルを r=ix+jy+kzとしたとき Aとdrの内積を積分経路Cに沿って始点Oから終点Pまで積分せよ。ということなのです。 エクトル場での線積分については、教科書または参考書等で復讐、確認しておいてください。 線積分は次のように計算します。 ∫[C] A・dr=∫[C] (-x^2i+2xzj+y^2k)・(dxi+dyj+dzk =∫[0,1] (-t^2+2t^2+t^2)dt =∫[0,1] 2t^2dt=[(2/3)t^3][0,1] =2/3 という結果が得られます。 質問者 お礼 2016/07/03 19:59 日本語の問題でもありましたね(~_~;) ありがとうございました! 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (1) trytobe ベストアンサー率36% (3457/9591) 2016/07/01 20:04 回答No.1 直線 C の途中の O から P までの線積分なのであるから、 端Oから端Pを、0からtまで、と定義してパラメータ表示してもいいが、 結局、端Oから端Pを、0から1まで、と定義してパラメータ表示したほうが、原点O(0,0,1) と P(1,1,1) の間の計算なら t なんかいらずに楽なのではないか、 と思いますが。間違ってはいないが、難しく考えるメリットが見当たらない。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 選積分の問題です、教えてください! 選積分の問題です、教えてください! 原点O、点P(3,1,2)とし、スカラー場f(x,y,z)=zy^2+xZ^2+yx^2とする。 1,媒介変数tを用いて直線OPの方程式を求めよ。 2,線分OPをCとするとき、線積分∫fdsを求めよ(積分範囲はC) お願いします 線積分について ∫C (3x^2+6y,-14yz,20xz^3)*dr(rはCに沿う単位ベクトル)という線積分 Cは原点 (0,0,0) と点 (1,1,1) を x=t,y=t^2,z=t^3に沿って結ぶ曲線 という問題の答えは、 ∫(9t^2,-14t^5,20t^10)・(1,2t,3t^2)dt=47/13でよろしいでしょうか? 違う答えのサイトが2つほどありまして、疑問です。 どなたかよろしくお願いします。 線積分についての質問です 線積分の問題が分かりません… f(x,y)=-y/(x^2+y^2) g(x,y)=x/(x^2+y^2) であるとき、原点Oを中心とする半径aの円Cに沿った次の線積分をもとめよ ∫c(f(x,y)dx+g(x.y)dy) お力添えお願いいたします 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 線積分の問題 Cを放物線y^2=2(x+2)と直線x=2の各々の一部からなる閉曲線とするとき、線積分 ∫c(-y/x^2+y^2)dx+(x/x^2+y^2)dyの値を求めよという問題です。 これを解きたいのですが、この範囲の内容は、教科書に載っておらず、先生が板書と口頭で説明したため、理解できていません。 原点を中心とした半径1の円周にそう積分に帰着させるとよいそうなのですが・・・ ネットで調べてはみたのですが、まず、「y^2=2(x+2)と直線x=2の各々の一部からなる閉曲線」これをどのように活用していけばよいのかすら分かりません。 線積分の考え方が分かる方、ご指南宜しくお願いします。 ベクトルの線積分の問題がわかりません ベクトルA=xsinyi-cosyj+z^2kの次の曲線Cに沿っての線積分∫cベクトルA・drを求めよ。 Cは曲線r=πti+2πt^2j+tk(0≦t≦1)とする。 ご解説をお願いします。 線積分 ベクトル場A=(3x^2+6y) e_x-14yz e_y+20xz^2 e_zについて、点(0,0,0)から点(1,1,1)までの線積分∫[C]A•drを、次に示される経路Cに沿って計算せよ。A,r,e_x,e_y,e_zはベクトルである。 (1)x=t,y=t^2,z=t^3 (2)点(0,0,0)から点(1,1,1)までの直線 (3)点(0,0,0)から点(1,0,0)、ついで点(1,1,0)、ついで点(1,1,1)までの直線 です。途中式もお願いします。 ベクトルの微分積分です.よろしくお願いいたします. 時間tにともなって運動する質量mの質点Pの位置ベクトルをr(ベクトル)=r(t)とする.この質点が原点Oに向かう力f(r)r(ベクトル) (r=|r(ベクトル)(t)|)を受けながら運動するとき,運動方程式m(d^2r(d^2r(ベクトル)/dt^2)=f(r)r(ベクトル) が成り立つ. このとき,次のことを証明せよ. (1)r(ベクトル)×r'(ベクトル)=Kは定ベクトルであって,r(ベクトル)・K=0である. (2)K=0ならばこの質点は原点を通る直線上を運動する. よろしくお願いいたします. 線積分 ベクトル場の線積分が分かりません. ベクトル場はa=2yu+xj+sin^2zkで曲線Cにそって線積分するのですが 一つは点P(1,0,0)を始点、点Q(0,1,π/2)を終点とする線分 二つめはCをr=costi+sintj+π/2tk(0<=t<=π/2t)です 質問をしてもr(t)をti+(1-t)j+(1-t)π/2kを使うと良いとしか分からず、 ノートを見ても 抽象的すぎて具体的にはどうすれば良いか分からず、 テキストを見ても同様の形の問題にたどり着けず頭がこんがらがっています。 教えてください。 ベクトルに関する線積分などの問題です ベクトル場A=x^3i+y^3j+z^3k、B=x^2i-z^2j+y^2kがある。 (i,j,kは、x,y,z方向の正の向きの単位ベクトルになります。) (1)線積分∫A・drを求めよ。経路は、(0,0,0)→(1,0,0)→(1,1,0)→(1,1,2)とする。 (2)ベクトル場Bの回転rotBを求めよ。 (3)次の面積分∫rotB・dSを求めよ。ただし、曲面Sは、xy平面上のz>=0にあって、原点を中心とする半径1の半円で囲まれた領域、S={(x,y,z)|x=0,z>=0,y^2+x^2<=1}とする。また、x>0を曲面Sの正の方向とする。 詳しい回答よろしくお願い致します。 (3)に関しては、ストークスの定理を使って線積分に直した方がいいのでしょうか? 線積分のパラメータ表示 こんばんは。 いつもお世話になっています。 今、ベクトルの線積分の問題が分からなくて困っています。 問題は、 ベクトル場A=2yi+xj+sin^2zkを曲線C(P(1,0,0)を始点、Q(0,1,π/2)を終点とする線分)に沿って線積分せよ。 というものです。 教科書に解き方が載っているのですが、まず 線分Cの方程式は(1-t)i+tj+π/2tk (0≦t≦1)なので・・とあり、なぜそうなるのか分かりません。 なぜパラメータ表示したときのxが1-tなのでしょうか。 どなたか回答お願いします;; 線積分 以下の線積分なのですが、どのように積分すればいいのか分かりません。 どなたか、解答もしくは方針だけでも教えてください。 F=-(GmM)/(|r|^3)・r Fとrはベクトル が与えられている。 (1) ∫[C_1]F・dr (2)∫[C_2]F・dr ただし、各積分領域は C_1については、 点(x_0,y_0,z_0)から点(x_1,y_1,z_1)への線積分で x=x_0+(x_1-x_0)t y=y_0+(y_1-y_0)t z=z_0+(z_1-z_0)t (0<=t<=1) である。 C_2については、円筒座標系で x=pcosφ y=psinφ z=h (0<=φ<=Φ) です。 わかりづらくてすみません。 線積分の問題です ベクトル場F=xi+2(x+2)j+ykに関する次の線積分を求めよ。積分路Cは原点Oから点A(1.2.2)に向かう経路とする。 ∫cF・dr 調べてみましたがわかりません。どなたか解法を教えていただきたいです。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 線積分の問題 お願いします・・・! 大変こまっています。 わかるかた、もしくはヒントや考え方だけでもお願いします。 問.原点を始点にし、1+iを終点にする曲線C1,C2,C3を考える。ただしC3は円弧である。 このとき各Cjをパラメータ表示し、次の線積分を計算せよ。 (1) Ij=∫cj ydx+xdy (j=1,2,3) (2) Ij=∫cj -ydx+xdy (j=1,2,3) (3) Ij=∫cj Zdz (j=1,2,3) パラメータ表示は C1:z(t)=t+it (0≦t≦1) C2=C'2+C"2でC'2:z(t)=t (0≦t≦1),C"2:z(t)=1+it (0≦t≦1) C3:z(t)=1+e^i(π-t)=1-e^-it (0≦t≦π/2) となりました。 が、線積分のやりかたが全然分かりません;; (1)、(2)はx,yが出てきていますが、パラメータ表示を変換するのですか? 基本からよく分かっていないのですが、かなり切羽詰っています; どなたか教えてください(泣) 線積分の問題 Φ=Arctan(y/x)とし、Cをxy平面上で原点とし半径aの円とする。 線積分∫c(∇Φ)・dr (drはベクトルです)を求めると、その値は0ではなく、2πになるのですが、なぜでしょうか。どなたかご教授願います。 ベクトル場の線積分 例えば f=xi + yj + zk としたときの(0,0,0)から(1,1,1)までの2点の路に沿うて ∫c f・dr を求める際、 tを媒介変数としてx=t,y=t,z=tと置いて解き進めていくと思います。 その過程でスカラー積を実行後、積分範囲を指定しなければならないと思います。(∫c →∫[0~1]のように) なのですがこの積分範囲の決め方がわからず困っています。 どなたかよろしくお願いします。 条件が変わった際の例などもあると幸いです。 線積分とグリーンの定理 円C1:x^2+y^2=1(x,y≧0)に(1,0)→(0,1)に向きをつける。 C2は(0,1)から原点に向きをつけた線分 C3は原点から(1,0)へ向きをつけた線分、 C=C1+C2+C3とする。 次の線積分をグリーンの定理を用いて計算せよ。 ∫c(2x^2y+xy+y^3)dx+(x^3+4xy^2+y^4)dy という問題があり、C1,C2,C3に分けて C1はグリーンの定理を使い、極座標に変数変換して π/8-1/3 という値を求めましたが、 解答を見るとこれがそのまま答えになっています。 C2,C3の線積分は必要ないのでしょうか? C2,C3もパラメーター表示して線積分してみたのですが C2では0 C3では1/5とでました。 これを足す必要はないのでしょうか? わかりにくい質問ですが、わかる方いらっしゃいましたら お教えください。 よろしくお願いします。 線積分についての質問です B(r)={-φy/2,φx/2,0}{√(x^2+y^2)≦a},B(r)=(-φa^2/2・y/y^2+x^2,φa^2/2・x/y^2+x^2,0){(√(x^2+y^2)>a}、(φ,aは定数)であり、xy面上で原点Oを中心とする半径bの円をCとしたとき、線積分∫c B(r)・dsの値を求めよ この問題が分かりません… 線積分 ベクトル場F=xy e_x-z e_y+x^2 e_zとスカラー場φ=2xyz^2について、曲線Cをt=0からt=1にいたる空間曲線x=t^2,y=2t,z=t^3とするとき、次の線積分を経路Cに沿って計算せよ。 (1)∫[C] F × dr (2)∫[C] φ dr ただし、F,e_x,e_y,e_z,drのrはベクトルである。 です。途中式もお願いします。 線積分 スカラー場Φ=2x-yzの次の曲線Cに関する線積分∫Φdsを求める問題で、Cは原点Oから点(3、3、2)にいたる線分を求める 問題なんですけど、(ds/dt)dt=(dr/dt)dt を求めるためにrをどのようにすればよいのでしょうか? r=(t+1)i+(t+1)j+t (0≦t≦2)ですか? ベクトル。 空間内に点A(1,2,3)がある。 (1)x軸と直交し、z軸の正の向きとの成す角が45°であり、y成分が正である単位ベクトル→tを求めよ。 (2)Oを原点とし、→t=→OTとなるように点Tを定め、直線OT上にOと異なる点Pをとる。 OP⊥APである時、Pの座標を求めよ。 (1)の回答が →t=(0,√2/2,√2/2) (2)が (0,5/2,5/2) となることは分かっているのですが、それぞれの解き方が全く分かりません。 よろしくお願い致します。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
日本語の問題でもありましたね(~_~;) ありがとうございました!