- 締切済み
長文ですいません。なす角に関してです。
原点をOとする。xy平面でOを中心とする半径2の円をA、点B(3,0)を中心とする半径1の円をBとする。BがAの周上を反時計回りに滑らず転がって、元の位置に戻るとき、初めに(2,0)にあったB上の点Pの 描く曲線をCとする。 (1)Bの中心をQ,動径OQがx軸の正方向となす角をθ(0≦θ≦2π)とする時、Pの座標を求めよ。 でOP=OQ+QPで求めようとして QPがx軸の正方向となす角を3θとしたんですが、答えにはπ+3θとなっていました。 どうして何でしょうか?
- みんなの回答 (2)
- 専門家の回答