ベストアンサー 極座標 直交座標 2015/04/18 16:21 r=4cosθ 直交座標の方程式で表せ x=rcosθ y=rsinθ とおいてからどうすればよいのですか? 参考書の答えは (x-2)^2+y^2=4 です。 詳しい解説お願いします。 みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー bran111 ベストアンサー率49% (512/1037) 2015/04/18 18:14 回答No.2 x=rcosθ y=rsinθ (1) は知っていて r=√(x^2+y^2), tanθ=y/x (2) は知らないというのは勉強に偏りがある。 f(r,θ)=0 (3) が与えられているときは(2)を代入して g(x,y)=0 (4) を導けばよい。 (4)が与えられているときは(1)を用いて(3)を導けばよい。 (3)に相当するのが r=4cosθ (5) である。これに(2)を代入すれば答えとなる。 この場合、話はもっと簡単で(5)は r=4cosθ=4x/r r^2-4x=0 (2)を用いて x^2+y^2-4x=0 (x-2)^2+y^2=2^2 質問者 お礼 2015/04/18 22:13 詳しい解説ありがとうございます。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (1) ffo_on ベストアンサー率30% (149/483) 2015/04/18 16:22 回答No.1 教科書を読み直そう 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 極座標と直交座標 「極座標で表したときの(r,θ)=(√5+1,Π/10)なる点を直交座標(x,y)であらわせ。ただし、cos,sin,tanなどの三角関数記号を用いずにあらわすこと」という問題です。 がんばって解いてみました。 x=rcosθ,y=rsinθより、 x=(√5+1)cos(Π/10),y=(√5+1)sin(Π/10) ここでsin(Π/10)=(√5-1)/4 なので(計算済み) y=1 さらにcos(Π/10)=)=√(10+2√5)なので(これも計算済み) x=5√2+√(10√5)+√(10+2√5) ???? yはともかく、xはこんな変な値になってしまってよいのでしょうか? 直交座標と極座標について 直交座標と極座標の関係は x=rcosθ y=rsinθとなり x'=Vcosθ=r'cosθ-rθ'sinθ (1) y'=Vsinθ=r'sinθ+rθ'cosθ (2) (Vは系の速度) で(1)×cosθ+(2)×sinθ をやるとrθ'の項が消えてVがで求まるはずなんですけど V=r'となりrω(rθ')になりませんよね。なぜですか? 動径の運動方程式と出すときは上と同じやり方で、(cos^2θ+sin^2θ=1を利用して)式が導出されていたのですが、何故Vを出すときは使えないのでしょうか?教えてください! 極座標の偏微分 二次元直交座標と極座標の関係が x=rcosφ y=rsinφ で表されるとき、∂r/∂x を求めたいのですが、 x=rcosφからr=x/cosφとしてrをxで偏微分すると1/cosφ=r/x となり、 r^2=x^2+y^2からr=√x^2+y^2 としてrをxで偏微分するとx/r となってしまうのですが、 どちらが正しいのですか??? 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム ラプラシアンの極座標表示について 化学系の学部にいるので数学は不得意なのですが,誰か教えて下さい。 ラプラシアンを2次元直交座標から2次元極座標に変換する場合 直交座標(x,y),極座標(r,θ)とすると, x=rcosθ,y=rsinθ・・・(1)からδ/δx,δ/δyを求める時,参考書によると r^2=x^2+y^2,tanθ=y/x・・・(2) δ/δx=(δ/δr)(δr/δx)+(δ/δθ)(δθ/δx) δ/δy=(δ/δr)(δr/δy)+(δ/δθ)(δθ/δy)・・・(3) (2)をxで微分すると 2r(δr/δx)=2x=2rsinθ (1/(cosθ)^2)(δθ/δx)=-(y/x^2)=-(sinθ/r(cosθ)^2) より δr/δx=cosθ,δθ/δx=-(1/r)sinθ 同様に δr/δy=sinθ,δθ/δy=(1/r)cosθ 以上の関係を(3)に入れれば, δ/δx=cosθ(δ/δr)-(1/r)sinθ(δ/δθ) δ/δy=sinθ(δ/δr)+(1/r)cosθ(δ/δθ)となります。 これで,合っていいるのですが,初めて,私がこの問題を考えた時, (1)をそれぞれ,rとθで偏微分しました。 δr/δx=1/cosθ,δθ/δx=-(1/rsinθ) δr/δy=1/sinθ,δθ/δx=(1/rcosθ)となりsinθ,cosθの項が 正解と逆転してしまい,異なる結果となってしまいました。 私は,どちらの方法でも同じになると思っていたのですが, どうして,違うのですか誰か分かりやすく教えて下さい。 極座標について、 x^2+y^2=2y を極座標で表したら、 x=rcosθ, y=rsinθ より r^2(cos^2+sin^2)=2rsinθ r^2=2rsinθ r(r - 2sinθ)=0 となると思うのですが、 これを場合わけすると、 1)r≠0のとき、 r=2sinθ 2)r=0のとき?? r=0のときどのように解釈していいのかわかりません。 (r=0のときr=2sinθを満たすといっていいのでしょうか?) このときどう表現すればいいのか教えてください。 座標 こんにちは。早速質問なんですが 球座標とデカルト座標の関係は x=rsinθcosφ y=rsinθsinφ z=rcosθ この関係はわかるのですがなぜ 線素ベクトルdrや面素ベクトルdSや体積素dV(r^2sinθdrdθdφ)となるのかがわかりません。円筒座標 x=rcosθ y=rsinθ z=z についても同様にわかりません。 どなたかお願いします。 極座標系における∇×Aの計算 直交座標系(x,y,z)を極座標系(r,θ,ψ)に変換すると x=rsinθcosψ y=rsinθsinψ z=rcosθ となりますよね。 これを用いて極座標系で∇×Aを計算すると、 その演算結果は以下のようになるらしいのですが、 その導出過程が分かりません。最初の 1/r^2sinθはヤコビアンで補正をかけているような 気がするのですが、その他の項には1/rsinθや1/rが 出てきてこれらが何を表しているのかさっぱり?で、 やっぱり分かりません。宜しければ教えていただけないでしょうか?(第1行目の(^r),(^θ),(^ψ)はそれぞれの 方向の単位ベクトルです。)お願いいたします。 ∇×A= |(^r)/r^2sinθ (^θ)/rsinθ (^ψ)/r | | ∂/∂r ∂/∂θ ∂/∂ψ | | A_r rA_θ rsinθA_ψ | 極座標の取り方 円柱を通りすぎる流れについて 渦度を用いる基礎方程式を解く際に極座標になおすという話になったのですが その時極座標の取り方がx=rcosθ、y=rsinθではなく(結局これと同じになるのですが) x^2+y^2=r^2 からなぜかyを定数とみなし 2xdx=2rdr dr/dx=x/r=cosθ 同様に dr/dy=y/r=sinθ として進めていました dx/dr=dr/dxとなってますよね… こうする意味がわかりません おしえてくださいm(_ _)m 二次曲線 (1)極方程式r(1+√3/3cosθ)=2√3/3の直交座標の方程式で表せ。 (2)(1)の曲線の焦点の座標を直交座標で求めよ r=√(x^2+y^2) X=rcosθ代入…??? 直行座標表示したい r(θ)=a{(1+bsin(nθ)} (0≦b<<1 , nは自然数) 極座標変換 x=rcos(θ) y=rsin(θ) のとき、x,yであらわす(つまり直交座標)方法を教えてください。 極座標による重積分の範囲の取りかた ∬[D] sin√(x^2+y^2) dxdy D:(x^2 + y^2 <= π^2) を極座標でに変換して求めよ。 という問題で、 x = rcosθ、y = rsinθ とおくのはわかるのですが、 rとθの範囲を、どのように置けばいいのかわかりません。 x^2+y^2 = (rcosθ)^2 + (rsinθ)^2 = r^2{(cosθ)^2 + (sinθ)^2} = r^2< = π^2 とした後、-π =< r =< π としたのですが、合っているのでしょうか? rとθの範囲の取りかたを教えてください。お願いします。 座標変換式についてです。 x=rsinθcosφ y=rsinθsinφ z=rcosθ r^2=x^2+y^2+z^2 これより、 ∂^2/∂x^2 +∂^2/∂y^2 +∂^2/∂z^2 の座標変換式を求めたいのですがどのようにして求めれば良いですか?導出方法お願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 次の極方程式の表す曲線を直交座標x、y 次の極方程式の表す曲線を直交座標x、yの方程式で表し、それがどのような曲線であるか調べよ。 r=3/1+2cosθ 解き方がわかりません・・・。 また図はどのようになりますか? 極方程式 次の直交座標に関する方程式を、極方程式で表せ x-√3y-2=0 r(cosθ-√3sinθ)=2 r{cosθ・1/2+sinθ・(-√3/2)}=1 までは理解できたのですが なぜ rcos(θ-5π/3)=1 になるのかが分かりません どうやって変形したのか教えていただけませんか? 2次元極座標表示での運動方程式の証明 2次元極座標表示での運動方程式の証明をやってるのですが rベクトルがあって x=rcosθ y=rsinθ というところからスタートしてます つまりrベクトルの先端の成分がx,yから始まっています x=rcosθ y=rsinθ から x''cosθ+y''sinθ=r''-rθ'^2=r''・er y''cosθ-x''sinθ=2r'θ'+rθ''=r''・eθ erはr方向の単位ベクトル eθはそれとは垂直な方向の単位ベクトルです まで行ってつまってしまいました しかし最後は Fr=m(r''-rθ'^2) Fθ=m(2r'θ'+rθ'') になっています それで答えとしてはあってるみたいですが そうなるとr''-rθ'^2と=2r'θ'+rθ''がaということになります これはどうしてそうなるのでしょうか? 'は微分記号です 3次元の極座標について x=rsinθcosφ y=rsinθsinφ z=rcosθ というのが3次元における極座標表示のようですが、なぜこのような式になるんですか? このような式にいたるまでの過程を教えてください。 できるだけ分かりやすく教えてほしいので、行列などを使っての説明はできるだけしないでください。 よろしくお願いします。 極座標表示 模範解答と計算が合わないのです・・・。 比較してみて下さい。 3次元ポテンシャルと極座標表示の分野で、 シュレーディンガー方程式に使う為の変換です。 △(x、y、z)=(∂^2/∂x^2)+(∂^2/∂y^2)+(∂^2/∂z^2) という式を x=rsinθcosψ、y=rsinθsinψ、z=rcosθ の変数変換をする。 ∂/∂x=(∂r/∂x)(∂/∂r)+(∂θ/∂x)(∂/∂θ)+(∂ψ/∂x)(∂/∂ψ) ∂/∂y=(∂r/∂y)(∂/∂r)+(∂θ/∂y)(∂/∂θ)+(∂ψ/∂y)(∂/∂ψ) ∂/∂z=(∂r/∂z)(∂/∂r)+(∂θ/∂z)(∂/∂θ)+(∂ψ/∂z)(∂/∂ψ) と表され、 r=√(x^2+y^2+z^2)、tanθ={√(x^2+y^2)}/z、tanψ=y/x の関係から各係数を計算して (∂r/∂x)=x/r=sinθcosψ、(∂r/∂y)=y/r=sinθsinψ、(∂r/∂z)=z/r=cosθ (∂θ/∂x)=cosθcosψ/r、(∂θ/∂y)=cosθsinψ/r、(∂θ/∂z)=-sinθ/r (∂ψ/∂x)=-sinψ/rsinθ、(∂ψ/∂y)=cosψ/rsinθ、(∂ψ/∂z)=0 となるので、これをずーっと計算すると △(r、θ、ψ)=(∂^2/∂x^2)+(∂^2/∂y^2)+(∂^2/∂z^2) =(1/r^2)(∂/∂r)(r^2・∂/∂r) +(1/r^2sinθ)(∂/∂θ)(sinθ∂/∂θ) +(1/r^2sin^2θ)(∂^2/∂ψ^2) ―――(1) となるそうなのですが、 私がちまちま計算しましたところ、 △(r、θ、ψ)=(∂^2/∂r^2)+(1/r^2)(∂^2/∂θ^2)+(1/r^2sin^2θ)(∂^2/∂ψ^2) という形になりました。 同じようで、微妙に違うのですが これはどういうことなのでしょうか? そのまま(1)式に拡張して良いのか、 計算が途中で間違えたのか、如何でしょう。 曲座標→直行座標 極座標において r=a{1+bsin(nθ)} 0≦b<1 nは自然 数 aは半径 で、 x=rcosθ y=rsinθ で座標変換すると n=2 の場合 sin(2θ)=2sinθcosθ=2xy/r^2=2xy/(x^2+y^2) よって √(x^2+y^2) =a [1+2bxy/(x^2+y^2)] になりますが、この座標変換の 時に arctanをつかって変換する方法 があったら教えてください。 極方程式と直交座標(方)は同一図形を表すか? 極方程式 r=sinθ+2 と 直交座標の方程式 4(x^2+y^2)=(x^2+y^2-y)^2 は 同一図形を表すかどうか。 変換しても、条件に含む・含まない点など、肝心なところがよくわかりません。 どなたか、ご解答をお願いできないでしょうか。どうぞよろしくお願いいたします。 極座標への変換について。 ある問題で、x,yを x = 1 + rcosθ y = 1 + rsinθ とおく。 という手順があるのですが、これはいいのでしょうか? 通常は x = rcosθ という風におくと思いますし、これはx,y座標の点に線を結んで、その線の長さをrとする、というイメージが沸くのですが上記のような 1 + rcosθ という置き方は、どういう考え方で置き換えているのでしょうか? よろしくお願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
詳しい解説ありがとうございます。