ベストアンサー ベクトルの計算 2015/03/27 12:16 ベクトルの絶対値について、|a→-b→|と|b→-a→|は同じでしょうか。 また、内積について、AB→・CD→とAB→・DC→は同じでしょうか。 二つも質問してすいません。 お返事お願いします。 みんなの回答 (3) 専門家の回答 質問者が選んだベストアンサー ベストアンサー nobuyuki0505 ベストアンサー率79% (19/24) 2015/03/28 10:02 回答No.3 まず結果から。 前者→正しい、後者→正しくない。 まず前者の説明。 ベクトルの絶対値は大きさを表します。 ベクトルをaとすると(矢印は見にくくなるので付けません)、 -aはaの向きを逆にしただけなので、 これらは大きさは等しくなります。 |a|=|-a| 同様に、質問にあるa-bとb-aは向きが逆なだけであるので、大きさは等しいので、 |a-b| = |b-a| は成り立ちます。 後者の説明。 これも矢印は省略します。 CD = - DC が明らかに成り立ちます。 この両辺にABを内積すれば、 AB・CD=AB・(-DC) が成り立ちます。 つまり、AB・CDとAB・DCは符号のみが異なるもの、ということです。 質問者 お礼 2017/01/14 18:11 順を追った説明、ありがとうございます。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (2) yyssaa ベストアンサー率50% (747/1465) 2015/03/27 16:18 回答No.2 ベクトルの絶対値について、|a→-b→|と|b→-a→|は同じでしょうか。 >常に同じです。 また、内積について、AB→・CD→とAB→・DC→は同じでしょうか。 >AB→⊥CD→(AB→・CD→=0)の場合を除いて、 AB→・CD→とAB→・DC→は同じではありません。 質問者 お礼 2015/03/28 17:43 お返事ありがとうございます。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 info222_ ベストアンサー率61% (1053/1707) 2015/03/27 13:52 回答No.1 >|a→-b→|と|b→-a→|は同じでしょうか。 同じです。 >AB→・CD→とAB→・DC→は同じでしょうか。 同じではありません。 質問者 お礼 2015/03/28 17:44 お返事ありがとうございます。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A ベクトルの内積の計算 例えば文字式で、 a・b+b・c=b(a+c) ってなりますけど、ベクトルの内積も同じように括弧で括れますか? AB・DC+AB・EF=AB(DC+EF) って正しいですか? (ABとかはベクトル。) ベクトルの内積って何? 角A=90度 AB=5 AC=4 の三角形において次の内積をもとめよ。 というばあいベクトルBA・BC=絶対値のベクトルlBAl・lBClcosαという感じになりますよね。 けど、別の問題では、次のベクトルa,bの内積と、sのなす角θ(0度≦θ≦180度)を求めよ。 ベクトルa=(-1,1) b=(√3 - 1,√3 +1) という問題では内積は、ベクトルa・b=2 となっています。 コサインはいらないのでしょうか・・・? 成分表示をされてるときはいらないのかな・・・とおもいました。 高3なのですが・・・。あまり深い知識はいらないのですが、この2つの何が違うのか?考え方を教えていただけたらと思います。お願いします。 ベクトルについて ベクトルの問題で 平面上にAB=2を満たす定点A,Bがある。 点PがベクトルAP、BPの内積≦0,ベクトルAB、APの内積≧ベクトルBA、BPの内積を満たして動くとき、√3AP+BPのとり得る値の範囲を求めよ。 という問題がありました。 三角形の成立条件とかいろいろ考えたのですがわかりません。 あと求めるものに√3APというように√3が付いているので何か意図があるのかな?と思ったのですがわかりません。 どうやって解いたらよいでしょうか? 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム ベクトルについて OA=√2、OB=1であるΔOABがあり、線分ABを3:2に内分する点をCとする。また、ベクトルOA=ベクトルа、ベクトルOB=ベクトルbとおく。 (2)OC⊥ABのとき、内積ベクトルa・ベクトルbの値を求めよ。 お願いしますm(_ _)m ベクトルです! 「一辺の長さが2の正六角形abcdef(頂点から反時計回りにa,b,c,d,…)がある。次の内積を求めよ。abベクトル・acベクトル」という問題です。 このときのacの値が答では2√3になるのですが、どうしてなのか、よく解りません。 (cosθとabベクトルは分かっています。)よろしくお願いします! ベクトルの内積 ベクトルの内積について質問です。 ある問題で、 AB→=x→-y→ OM→=y→-x→ AB⊥OMのとき AB・OM=0より |x|^2-2x→・y→+|y|^2=0 となっているんですけど、これって普通に展開していますよね? 内積と掛算って一緒じゃないはずなのに普通に展開しても良いのでしょうか? a→・b→=|a→||b→|cosθを用いて出したのならこのときのcosθの値はどこにいったのでしょう? わかる方教えてください。 空間ベクトル ベクトル空間 空間ベクトル ベクトル空間 線形空間=ベクトル空間と認識しています。 テキストの内積空間の項目で空間ベクトルという表現がありました。 例えばベクトルaとベクトルbの内積はa・b=|a||b|cosθと表され、 これを空間ベクトルと表現しています。||は絶対値です。 空間ベクトルとは何なのでしょうか? ある集合内のベクトルの事を空間ベクトルと呼んでいるのでしょうか? ご回答よろしくお願い致します。 ベクトル計算について質問です ベクトル計算について質問です Aをベクトルとすると ∇・A に左から∇の内積を取った場合、 ∇^2・Aになりますが (∇・A) に左から内積を取った場合は∇^2・Aにはなりませんよね? ベクトルの問題 お世話になります。ベクトルの問題が解けないので、教えてください。 △OABにおいて、OA=2、OB=3、AB=4である。点Oから辺ABに下ろした垂線の足をHとする。→OA=→a,→OB=→b、とおくとき、 (1)内積→a*→bを求めよ。 (2)→OHを→a,→bを用いて表せ。 わかる範囲で自分の解答を載せると、 (1)は余弦定理よりcos∠AOB=(9+4-16)/2*3*2=-1/4 よって→a*→b=2*3*(-1/4)=-3/2 これ以外に何か解答はありますでしょうか。 (2)は→OH⊥→ABなので、内積0を使うと思うのですが、→OHをどう表すかわかりません。 ベクトルの問題を教えてください。 ベクトルの問題を教えてください。 1、三角形ABCの各辺の辺AB↑をベクトルc、辺BC↑をベクトルa、辺AC↑をベクトルb、辺ACと辺BCのなす角をθとする。 (1)cをaとbによりベクトルの式を用いて表せ。 (2)ベクトルの内積を用いて三角形に関する余弦公式 c=√a^2+b^2-2ab*cosθを導け。(ヒント:ベクトルcについて同じベクトルどうしの内積を計算してみよ。) 2、スカラー界ψ=4xz^3-3x^2について (1)点(x,y,z)におけるψの傾き(勾配)を求めよ (2)点(2,-1,2)における傾きを求めよ (3)点(2,-1,2)における単位ベクトルu=1/7(2i-3j+6k)に対する方向微係数をもとめよ ベクトルの内積と掛け算の違い ベクトルの掛け算というものはあるのでしょうか? 例えばaベクトル(a1,a2)、bベクトル(b1,b2)という2つのベクトルがあるとき、この2つのベクトルの掛け算はどうなりますか?そもそもベクトル同士の掛け算はあるのでしょうか? また、内積はaベクトルの大きさ×bベクトルの大きさ×cosΘとなり、aベクトル・bベクトルで表されますが、これは掛け算とは違いますよね? また上の2つのベクトルを利用すると aベクトル・bベクトル = a1b1+a2b2 と、a1b1+a2b2で計算して出すこともできますがこれもベクトルの掛け算とは言わないのですよね? なぜこんなことが気になったかというと、ある問題の解答が分からなかったためです。 問) aベクトル、bベクトルが次の条件を満たすとき| 2aベクトル-bベクトル |の値を求めよ(「 | 」は絶対値です)。 ●条件 | aベクトル | = 1 , | bベクトル | = 4 , aベクトルの・bベクトル = 2 上の問題の解答が、| 2aベクトル-bベクトル | を二乗して、 4aベクトル・aベクトル - 2aベクトル・bベクトル - 2bベクトル・aベクトル + bベクトル・bベクトル となり、内積の性質を利用し、 4 |aベクトル |^2 - 4aベクトル・bベクトル + |bベクトル|^2 となり、答えは12になります。 この二乗したもの(掛け算?したもの)を内積とみて、内積の性質を利用して解いていますが、そもそもこの掛け算を内積とみていいんですか?この・は掛け算の・ではなく内積の・なんですか? そもそも内積とはなんなんでしょう?・は掛け算じゃないって先生はいいますがもう頭がこんがらがってわかりません。 わかるかた、よろしくお願いいたします。 ベクトルの内積 ベクトルの内積を勉強していて、ふと思ったのですが、 ベクトルの内積計算において、 3つのベクトルをかけることはできるのでしょうか? ベクトルA,B,Cにおいて A・B = |A|・|B|COSθ となるのと同じように A・B・C =? これもどうにかして計算することはできるのでしょうか? 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム ベクトル △ABCにおいて、辺ABを3:1に内分する点をD、辺BCを2:3に内分する点をEとし、線分CDと線分AEの交点をFとする。ベクトルAB=ベクトルa、ベクトルAC=ベクトルbとして (1)線分DCをt:(1-t)に内分するとして、ベクトルAFをベクトルaとベクトルbを用いて表せ (2)3点A,F,Eが一直線上にあると考えて、ベクトルAFをベクトルaとベクトルbを用いて表せ (3)ベクトルAFをベクトルaとベクトルbを用いて表せ という問題があります (1)は ベクトルAF=(1-t)ベクトルAD+t×ベクトルAC =(3/4)(1-t)ベクトルa+t×ベクトルb と解けたんですが 2と3が先に進めません どうやってすればいいでしょうか 高校の数Bの平面ベクトルのところです ベクトルの質問です。 △OABにおいて、OA=3 OB=√3 cos∠AOB=-√3/3である。辺ABを1:2に内分する点をPとする。また、OAベクトル=aベクトル OBベクトル=bベクトルとする。 (1)内積aベクトル・bベクトルの値をもとめよ。また、OPベクトルをaベクトル bベクトルを用いてあらわせ。 (2)OQベクトル=tOPベクトル(tは実数)となる点Qをとる。AQ⊥OQとなるとき、tの値をもとめよ。 (3直線OPに関して点Aと対称な点をCとする。)直線ABと直線OCとの交点をRとするとき ORベクトルをaベクトル bベクトルを用いて表せ。 ベクトルの問題です ベクトルの問題です。平面上の△0ABが0A=0B=1を満たしてる。このとき、0A↑=0a↑、0B↑=0b↑ とし、内積a↑・b↑=kとおいて、 辺0Aの垂直二等分線の方程式を媒介変数tとa↑、b↑、kを用いて表すと、1/2a↑+(ア ) となる。また△0ABの外接円の中心をpとおくとき、位置ベクトル0p↑をa↑、b↑、kを用いて表すと(イ )となる。アとイを教えて下さい。宜しくお願いします。 ベクトル ベクトルa,b,c,が与えられたとき、これらのベクトルから新たに b´=b-{a(a*b)/lal^2} c´=c-{a(a*c)/lal^2}-{b´(b´*c)/lbl^2} を作る。ここで(a*b)などはベクトルaとベクトルbの内積を表す。 a,b´,c´は互いに直交することを示しなさい。 ※b´やc´は微分ではなくbやcのダッシュということです。 lalやlblは絶対値aや絶対値bという意味です。 自分としては直交なのでa⊥b´=a*b=0 b´⊥c´=b´*c´=0 を示せればいいのではないかと思ったのですが、できません。 考え方から違いますか?教えてください。お願いします。 ベクトルの途中計算がわからない ベクトルの証明問題の途中計算?で、 (M1A+M2D)+(BN1+CN2)+(AB+DC) =AB+DC となっていたんですが、なぜこうなるのかわかりません。 問題文は、 「四角形ABCDにおいて、辺ADを三等分する点をA野川から順にM1,M2、辺BCを三等分する点を、Bの側から順にN1,N2とする。以下の問いに答えよ。」 というものです。 ベクトル 上底AD=6、下底BC=9、AB=3、∠ABC=60゜の台形ABCDの辺DCを2:1に内分する点をEとし、ベクトルBA↑と同じ向きの単位ベクトルをa↑、BC↑と同じ向きの単位ベクトルをb↑とする ベクトルDB↑をa↑、b↑を用いて表せ、またベクトルDB↑の大きさを求めよ 解き方を教えてください ベクトルの問題です 3辺がAB=8 BC=12 CA=10である△ABC の外心をO ∠Aの二等分線と辺BC との交点をDとする。(ベクトルOA)=(ベクトルa)、(ベクトルOB)=(ベクトルb)、(ベクトルOC)=(ベクトルc) とするとき、次の問に答えよ。 (1)△ABC の外接円の半径を求めよ。 (2)内積 (ベクトルa)・(ベクトルb)、(ベクトルb)・(ベクトルc)を求めよ。 (3)OB⊥ADを示せ。 どうしても解けません。考え方をわかりやすく教えてください。 ベクトル 正六角形ABCDEFにおいてベクトル→^AB=→^a、→^BC= →^b,とするとき、次のベクトルは→^CD、→^BD、→ ^ECを→^a,→^bで表せ。という問題が分かりません 教えてください! 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
順を追った説明、ありがとうございます。