締切済み シグマとコンビネーションの高校数学の計算 2014/12/01 17:41 ΣnCk2∧k これをおしえてください! Σはk=0→nです! わかりにくくてすいません! みんなの回答 (1) 専門家の回答 みんなの回答 ask-it-aurora ベストアンサー率66% (86/130) 2014/12/01 18:32 回答No.1 二項定理で (1 + 2)^n を展開すれば答えは 3^n とわかります. 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 高校数学の数列の和の計算 4-7 次の和を計算せよ (1)Σ[k=1→n]k・nCk (2)Σ[k=1→n]k^2・nCk 解説はK・nCk=n・n-1Ck-1となっていてこの式の意味が左辺がn人からk人を選び、そのk人から1人のリーダーを選ぶという場合の数で右辺はn人から1人のリーダーを選んでからk人の組をつくるという場合の数で一致するとあるのですが、左辺は分かりますが右辺の意味ですが1人のリーダを選んだ後n-1任からk組作るのだったらn・n-1Ckじゃないんですか? (2)は(1)のK・nCk=n・n-1Ck-1を使って Σ[k=1→n]k^2・nCk=nΣ[k=1→n]k・n-1Ck-1(1) =nΣ[k=1→n]{(k-1)・n-1Ck-1}+n-1Ck-1}(2) =n[Σ[k=2→n]{(k-1)・n-1Ck-1}+Σ[k=1→n]n-1Ck-1](3) =n[(n-1)Σ[k=2→n]{(n-2)・n-1Ck-2}+Σ[k=1→n]n-1Ck-1](4) =n(n-1)・2^(n-2)+n・2^(n-1)(5) =n(n+1)・2^(n-2)(6)とあるのですが(1)から(2)、(2)から(3)、(3)から(4)の変形をどうやったのか分かりません 高校数学の数列の和の計算 4-7再質問 高校数学の数列の和の計算 4-7 次の和を計算せよ (1)Σ[k=1→n]k・nCk (2)Σ[k=1→n]k^2・nCk 解説は(1)はK・nCk=n・n-1Ck-1となっていてこの式の意味が 左辺の意味ですがn人からk人を選んでそのk人から一人のリーダーを選ぶ場合の数で右辺はリーダーを一人決めて、残りのn-1人からk-1人を選ぶという事ですか?良く分かりません (2)は(1)のK・nCk=n・n-1Ck-1を使って Σ[k=1→n]k^2・nCk=nΣ[k=1→n]k・n-1Ck-1(1) =nΣ[k=1→n]{(k-1)・n-1Ck-1}+n-1Ck-1}(2) =n[Σ[k=2→n]{(k-1)・n-1Ck-1}+Σ[k=1→n]n-1Ck-1](3) =n[(n-1)Σ[k=2→n]{(n-2)・n-1Ck-2}+Σ[k=1→n]n-1Ck-1](4) =n(n-1)・2^(n-2)+n・2^(n-1)(5) =n(n+1)・2^(n-2)(6) とあるのですが(3)から(4)の変形をどうやったのか分かりません Σと二項係数の入った計算 次の2つの等式 ・Σ(-1)^k nCk 1/k^2 = -1/n Σ1/k (ただし、Σはkが1からnまで動くものとする) ・Σ(-1)^k nCk Σ1/m = -1/n Σ(-1)^k nCk (ただし、はじめのΣはkが1からnまで動くものとし、2つ目のΣはmが1からkまで動くものとする) が成り立つことの証明がよくわかりません。(nCkは二項係数を表すものとする) (類似の等式:Σ(-1)^k nCk 1/k = -1/n Σ1/k (ただし、Σはkが1からnまで動くものとする)は、-log(1-z)=log(1+1/(1-z)) の両辺を巾級数に展開したときのz^nの係数を見比べることによって示せました。) 上記の証明(またはそのヒント)と、一般的に言えそうな拡張などがあれば、教えて頂けると大変有り難く存じます。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム Σの計算方法について 確立の問題を解いていたのですが、途中式に以下の数式がでてきて計算が進みません。 (1)Σ[k=0,n]k*nCk*p^k*q^(n-k) (2)Σ[k=0,n]k(k-1)*nCk*p^k*q^(n-k) (3)Σ[k=0,n]k*p^k*q (1)(2)なんかは、Σ[k=0,n]nCk*p^k*q^(n-k)=(p+q)^nの公式にもっていけばいけそうかと思うのですが、式変形がさっぱりわかりません。 どなたかよろしくお願いします。 組み合わせの計算 Σ[k=1,n-1]nCk=(2^(n)-2)となるのはなぜでしょうか?? なぜ2^nがでてくるのでしょうか?? 教えてください。 再帰呼び出しを用いるnPk,nCk 計算プログラム作成 javaで再帰呼び出しを用いるnPk,nCk計算プログラム作成したいです。 同じクラスでnPk,nCkを求める事です。 再帰呼び出しで nからkを求める事ができないです。ひとつだけなら できますがふたつを一緒に求める事ができません。 なんか方法がないでしょうか?お願いいたします。 結果は 引数nとk値で、 nPk、nCkの計算結果を出したいです。 大学数学 大学数学 fは[0,1]において有界な可測関数とする。x=0において連続。このときfのベルンシュテイン多項式f_n(x)は、lim[n→∞]f_n(0)=f(0)であることを証明して頂きたいです。 ベルンシュテインの多項式 f_n(x)=Σ[k=0→∞] f(k/n) nCk x^k (1-x)^(n-k) 高校数学の数列のΣ計算の問題です 4-6 数列a[n](n=1,2,...)においてΣ[k=1→n]{(k+1)(k+2)a[k]}/3^(k-1)=-1/4・(2n+1)(2n+3)が成り立っている 次の問いに答えよ (1)a[n]をnの式で表せ (2)Σ[k=1→n]a[k]を求めよ (1)は分かりましたが(2)で使うと思うので、解説は(1)から書きます (1)n>=2のとき(Σ「k=1→n]-Σ[k=1→n-1]){(n+1)(n+2)a[n]}/3^(n-1)=1/4・{(2n+1)(2n+3)-(2n-1)(2n+1)であり、a[n]=-(2n+1)/{(n+1)(n+2)}・3^(n-1) (n>=2) また与えられた等式にn=1を代入して(2・3a[1])/3^0=-1/4・3・5 よってa[1]=-5/8 (2)はa[k]=b[k]-b[k-1](k>=2)をみたすb[k]として(A・3^k)/(k+2)の形のものが、とりあえず考えられる (A・3^n)/(n+2)-{A・3^(n-1)}/(n+1)={A(2n+1)3^(n-1)}/(n+1)(n+2)はA=-1のときにa[n](n>=2)と一致 するからΣ[k=1→n]a[k]=-5/8-Σ[k=2→n]{3^k/(k+2)-3^(k-1)/(k+1)} =-5/8-{3^n/(n+2)-3^(2-1)/(2+1)} =3/8-3^n/(n+2) これはn>=2で適用できる式であるがn=1のとき{3^n/(n+2)-3^(2-1)/(2+1)}=0であるからn=1でも適する とあるのですが a[k]=b[k]-b[k-1](k>=2)をみたすb[k]として(A・3^k)/(k+2)の形のものが、とりあえず考えられるの所で 何故そんな事が言えるのか分かりません、b[k]として(A・3^k)/(k+2)の形この式はどこから来たのですか? 後はΣ[k=1→n]a[k]=-5/8-Σ[k=2→n]{3^k/(k+2)-3^(k-1)/(k+1)}が成り立つのが分かりません a[k]は(1)で出したa[n]=-(2n+1)/{(n+1)(n+2)}・3^(n-1にnをkにした式のはずですし、k=1の時は-5/8ですがこれは分けて考える必要がありますから、何故一つの式に a[k]=-5/8-Σ[k=2→n]{3^k/(k+2)-3^(k-1)/(k+1)}のように入れているのか分かりません C言語での組み合わせの問題について (環境はmacで, gcc 4.0.1を用いています) #include <stdio.h> main(void) { int n, k, nck; printf("n = "); scanf("%d", &n); printf(" k nCk\n"); k = 0; nck = 1; printf("%12d%12d\n", k, nck); for(k=1; k <= n; k++) { nck = nck * (n-k+1)/k; printf("%12d%12d\n", k, nck); } } とした場合, 入力した値n=29までは正しい答えが得られるのですが n=30以降では途中から答えが狂い始めます. この現象はなぜ起こるのでしょうか? 高校数学ですが、 Σ〔k=1~n〕2^(k-1)=Σ〔k=0~n〕2^(k)は成り立ってますか??? ご回答おねがいします。 数学IIB Σの計算 Σ[k:0→n] (10n-10k+1) 次の二種類の回答をしたのですが、 上の方法がダメな理由を聞かせてください また、下のようにk=0のときを別個に考えずにまとめてやろうとしたら上のようになったのですが、別個にやるしかないのでしょうか? Σ[k:0→n] (10n-10k+1) =10n(n+1)-10{(n+1)(n+2)/2}+(n+1) (←項数がn+1だから....) =5n^2-4n-9 Σ[k:0→n] (10n-10k+1) =(10n+1)+Σ[k:1→n] (10n-10k+1) =(10n+1)+(5n^2-5n+n) =5n^2+6n+1 汚くて見にくく申し訳ありませんが、よろしくお願いします m(_ _)m 確率の問題です 「ある試行で事象Aの起こる確率をPとする。この試行を独立にn回繰り返すとき、事象Aがちょうどk回起こる確率は、 nCk p^k・(1-p)^(n-k)」 だというのはわかるのですが、 その期待値の Σ(from k=0 to n)k・nCk p^k・(1-p)^(n-k)というのがよくわかりません。シグマがあったり nCk p^k・(1-p)^(n-k) のまえについているkがあったりするのは理解に苦しむのですが。例えば、k=3のときを考えてみると、Σ(from k=0 to n)k・nCk p^k・(1-p)^(n-k)の式のkのところに3を代入すればよいのですよね。そうすると、 「from k=0 to n」のところのk=0 にも入れるのでしょうか。「from 3=0 to n」になってしまうと思うのですが。 よろしくお願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム コンビネーション,二項係数の求め方 n≒1000くらいまでコンビネーションnCkを計算できるプログラムを作ろうと思っています。 階乗を使った公式では直ぐに破綻してしまうので 7C3=(7・6・5)/(3・2・1)とやるようなプログラムを組んだのですが 希望より小さなnで破綻してしまいます。 とりあえず、今は7C3=(7/3)・(6/2)・(5/1)とやるような計算法で凌いでいますが 途中で実数計算(整数計算でないという意味)をせざるを得ず、ちょっと気持ち悪いです。 究極のプログラムを組もうという気は無いのですが もう少し現状を改善したいと思っています。 良きアドバイスをいただけたら幸いです。 (-1)^k・nCk・k^v のシグマ計算絡みです 自分にとっては、未だ見たことも問題です。どなたか、この場合の切り口だけでも教えていただけませんか。どうかよろしくお願いいたします。 <問題> n:自然数 v:0以上n以下の整数 f(v)=Σ (-1)^k・nCk・k^v (k=0からnまで) とすると, f(v)=0 ( 0≦v≦n-1 のとき) f(v)=(-1)^n・n!( 0≦v≦n-1 のとき) となることを示せ。 大学入試レベルの問題 大学入試レベルの問題 nは2以上の整数であるとき、次の等式を示せ。 Σ_{k=1}^n (-1)^{k-1} k nCk = 0 (nCkはコンビネイション) どうしても解くことができません。。 証明方法も帰納法でやっても途中でできなくなりました。 コンビネーションの問題 コンビネーションの問題で、n_C_k で、kを1~n-1まで動かしたときに、すべて3で割切れるためのnの条件を求める問題で、どのように考えたらいいのか困っています。 n=1で成り立つことが必要だからnは3の倍数、くらいは分かるのですが、このあとどのように考えたらいいのでしょうか。ご教授お願いします。 Σの中の組み合わせ Σがk=1からnまでのとき Σ(nCk)*2^(k-1)=(3^n-1)/2となることの説明をお願いします。 高校数学 数列 次の3条件(i),(ii),(iii)を満たすような数列{a(n)}を考える。 (i) a(1)=1/2 (ii) a(2n+1)=a(2n)+1/2(2n-1)n(2n+1) (n=1,2,3…) (iii) Σ[k=1~2n] a(k)*(-1)^(k-1)=Σ[l=1~n] 1/(n+l) (n=1,2,3…) この数列の第2n+1項a(2n+1)を求めよ。 (iii)より Σ[k=1~2n] a(k)*(-1)^(k-1)=Σ[l=1~n] 1/(n+l) ー(1) Σ[k=1~2n+2] a(k)*(-1)^(k-1)=Σ[l=1~n+1] 1/(n+l) ー(2) (2)-(1)より、 a(2n+1)*(-1)^(2n)+a(2n+2)*(-1)^(2n+1)=1/2n-1/(2n+1) ⇔a(2n)=a(2n-1)-1/2n(2n-1) したがって、(ii)より、 a(2n+1)=a(2n)+1/2(2n-1)n(2n+1) =a(2n-1)-1/2n(2n-1)+1/2(2n-1)n(2n+1) =1/2(2n-1)n(2n+1)-1/2n(2n-1)+…+a(2)-a(1) =Σ[k=1~n] 1/2(2n-1)n(2n+1)-Σ[k=1~n] 1/2n(2n-1) =-Σ[k=1~n] 1/(2n-1)(2n+1) =(-1/2)Σ[k=1~n] {1/(2n-1)-1/(2n+1)} =(-1/2){1-1/(2n+1)} =-n/(2n+1)ー(答) 添削お願いします。 高校数学 数列 第n項がa(n)=[log{2}(n)] (2は底 nは真数) (n=1,2,3…)で表される数列{a(n)}について、 Σ[k=1~(2^m)-1] a(k) を求めよ。 ただし、[log{2}(n)]はlog(2)nを超えない最大の整数を表す。また、mは自然数とする。 2^(k-1)≦n≦2^k-1のとき、 k-1≦log{2}(n)≦log{2}(2^k-1) より、 [log(2)n]=k-1 また、[log(2)n]=k-1となるようなnは、2^k-1-2^(k-1)+1=2^(k-1) 個ある。 よって、 Σ[k=1~(2^m)-1] a(k) =Σ[k=1~m] (k-1)*2^(k-1) =Σ[k=0~m-1]k*2^k =Σ[k=1~m-1]k*2^k これをSとおくと、 2S-S=Σ[k=0~m-1]k*2^(k+1)-Σ[k=0~m-1]k*2^k ⇔S=(m-1)*2^m-Σ[k=0~m-1]2^k =(m-2)*2^m+2ー(答) 添削お願いします。 数理統計学について。 問題は、 表が出る確率pのコインをn回投げるとき、表がちょうどk回でる確率はどれだけですか です。 自分が考えた所は、nCk × pのk乗 ×(1-p)のk乗 です。 そこで、nCk は n! / k!(n-k)!と変換できます。 ここから、nを無限にとると考えて極限とりたいなと思うのですが、そうすると、pは1未満なので0に収束してしまいます。。。 何かヒントがほしいです。。。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など