ベストアンサー 極限の大小関係の性質について。 2014/10/08 11:43 lim[n→∞]an≦lim[n→∞]bnならan≦bnはいえますか? みんなの回答 (5) 専門家の回答 質問者が選んだベストアンサー ベストアンサー info222_ ベストアンサー率61% (1053/1707) 2014/10/08 13:37 回答No.2 >lim[n→∞]an≦lim[n→∞]bn なら an≦bn(n=1,2,3,…) はいえますか? であれば、答えは「言えない」です。 反例 an=30/(n+10), bn=3ln(n)/n+1 (n=1,2,3, …) に対して lim[n→∞]an=0≦lim[n→∞]bn=1 であるが、しかし a1>b1, a2>b2, a3>b3, a4>b4, a5>b5 なので an≦bn(n=1,2,3,…) は n<6では成り立たない。 質問者 お礼 2014/10/09 12:42 ありがとうございます。 >lim[n→∞]an≦lim[n→∞]bn なら an≦bn(n=1,2,3,…) はいえますか? と言えば良かったですね。 分かりました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (4) ONEONE ベストアンサー率48% (279/575) 2014/10/08 14:55 回答No.5 極限が一致する場合はだめのようですね >#4 質問者 お礼 2014/10/09 12:43 ありがとうございます。 なるほどです。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 Tacosan ベストアンサー率23% (3656/15482) 2014/10/08 14:42 回答No.4 a[n] = 1 + 2/n, b[n] = 1 + 1/n に対して「あるNが存在して、n ≧ Nで a[n]≦b[n] となる」ことをどうやって言えばいいでしょうか>#3. 質問者 お礼 2014/10/09 12:42 ありがとうございます。 そうなんですね~。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 ONEONE ベストアンサー率48% (279/575) 2014/10/08 14:29 回答No.3 n→∞で a[n]およびb[n]の極限値α, βが存在しα≦βが言えるのならば 「あるNが存在して、n ≧ Nで a[n]≦b[n] となる」は言えそうです。 質問者 お礼 2014/10/09 12:42 ありがとうございます。 そうですか~。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 Tacosan ベストアンサー率23% (3656/15482) 2014/10/08 11:56 回答No.1 そもそも「an≦bn」は命題として意味を持たないが, 意味を持たせるべくどのように解釈したとしても言えるわけがない. 質問者 お礼 2014/10/09 12:41 ありがとうございます。 そうですか。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 数三の数列の極限値の性質について 数列の極限値の性質に 数列{An}{Bn}が収束して lim An=α lim Bn=β(ここに書くlimの下にはすべてn→∞があると考えてください) とするlim An/Bn=αβとあり、 この法則を使って lim √(n+2)-√n/√(n+1)-√n を解こうとしました で、lim √(n+2)-√n=0となったので lim √(n+2)-√n/√(n+1)-√n=0 としたのですが、答えは2です この考え方はどこがいけないのかわからないので わかる方教えてもらえませんか? 無限等比級数の極限の問題です。 学校の問題集の問題なのですが。 次の命題の真偽を調べて下さい。偽のときはその反例をあげてください。 (注){an}と{bn}は無限数列です 1.lim_(x→∞){an}=+∞ , lim_(n→∞){bn}=0 ならば,lim_(x→∞){an}{bn}=0 解答では 偽で反例は {an}=2n ,{bn}=1/n となっているのですが どうしてなのでしょうか? 2.lim_(x→∞){an}=+∞ , lim_(n→∞){bn}=+∞ ならば、lim_(n→∞)({an}-{bn})=0 この問題は解答では 偽で反例は{an}=n,{bn}=n^2 となっています。 教えて下さい。お願いします。 数列の極限の証明 「a1=a,b1=b,(a>b>0) a(n+1)=(an+bn)/2 b(n+1)=anbn^1/2 で定まる二つの数列{an},{bn}は同じ極限値を持つことを示せ。」 という問題を解いていて、このリンクの証明を見たのですが、 http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1463528674 証明の最後で、a_n+1=ka_n を満たす1より小さい正の実数kが存在することから、 a_n=k^(n-1)*a1 として、n→∞でa_n→0としていましたが、 a_n=f(n)として、f(x)が単調減少関数でf(n+1)=k_n(fn) (k_nはnによって変化する1より小さいある正の定数)となっても、 k_nはnに依存するので、必ずしもx(またはn)→∞でf(x)(またはf(n))→0になるとは限らないのではないのでしょうか。(ex. k_n→1 (n→∞), f(x)=(1/x)+(1/2)) その可能性はないのでしょうか? 以下がリンク先の証明の全文です。 与えられた漸化式と0<a<bより帰納的に0<an,0<bnとなる。 すると相加・相乗平均の関係より a(n+1)/b(n+1)=(an+bn)/2√(anbn) =(1/2){√(an/bn)+√(bn/an)}≧(1/2)*2*√(an/bn)*√(bn/an) =1 ∴b(n+1)≦a(n+1)となる。 ここで等号が成り立つとすると bn=anより a(n+1)=(1/2)(an+bn)=(1/2)*2an=an となり an=a(n-1)=…=a1=a=b1=b となりa<bに矛盾する。 よって等号は成立しないので b(n+1)<a(n+1) となり、したがって bn<an…(*) となる。 すると an+bn<2anより a(n+1)=(1/2)(an+bn)<(1/2)*2an=an となる。 したがって0<anより a(n+1)=k*an を満たす1より小さい正の実数kが存在する。 すると an=k*a(n-1)=k^2*a(n-2)=…=k^(n-1)*a1=k^(n-1)*a となるから lim[n→∞]an=a*lim[n→∞]k^(n-1)=0…(**) となる。 すると(*)と0<bnより 0<bn<an だから(**)からはさみうちの原理により lim[n→∞]bn=0 となる。 よって lim[n→∞]an=lim[n→∞]bn=0 となる。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 常にan<bnならその極限も lim[n→∞]an≦lim[n→∞]bnと必ず「=」がつかないといけないんですか? 何で教材にこの事が書いてないんでしょうか。 数IIIの数列の極限の問題 数列{an}に対してlim(an+5/2an+1)=3であるとき limanをもとめよ n→∞ 解説にbn=an+5/2an+1とおいて とかいていますが そこからan(2bn-1)=5-bn ↓ an+5/2an+1={1/2(2an+1)+9/2}/2an+1 ---(1) (1)の変換がよくわかりません この極限は一体? an=(1・3・5・7・9…(2n-1))/(2・4・6・8・10…2n)とする。 liman(n→∞)とlimΣan(n=1→∞)を求めよって問題です。 liman(n→∞)は、an=(1-1/2)(1-1/4)(1-1/6)…((2n-1)/2n)と表せるので、 (1/2+α)^n<an<β^nとおける。(0<α<1/2、α+1/2<β<1) はさみうちの原理よりliman(n→∞)=0 困っているのはlimΣan(n=1→∞)のほうです。 どうやら無限大になるようですが証明できません。 第n項までの和はΣan=(1/2{2-(1/4{2-(1/6{2-(1/8{・・・{2-(1/2n)})とかけるのですがここからどうしたらいいか… 色々やっているうちにbn+1=2(n+1)bn+1・3・5・・・(2n+1)というあまり意味のない漸化式が出てきたり…(ちなみにbnはΣanの分子です。) f(n)<Σanとなるような無限大に発散するf(n)を見つければ解決するんでしょうか?誰か教えてくださいm(__)m 収束する数列に関する定理の証明についての質問。 教科書に載っている証明なのですが・・・ lim An=α、lim Bn=β とするとき、 n→∞ n→∞ An≦Bn (n=1,2,…)であればα≦βである。 【証明】 もしα>βであるとし、c=α-β( >0)とする。 lim An=α、lim Bn=β より、 n→∞ n→∞ nが十分大ならば、|An-α|< c/2、|Bn-β|< c/2であり、 したがってAn-Bn >0となり仮定に反する。 それで疑問に思ったのが、なんで突然c/2が出てきたのかと。 このc/2はなに者? |An-α|< c/2、|Bn-β|< c/2 により なぜAn-Bn >0が言えるのかわからないのです。 助けてください>< 数学についての質問です lim(n→∞)AnBn=(lim(n→∞)An)(lim(n→∞)Bn)の証明です An→α、Bn→βで αβ―AnBn=(α‐An)β+An(β‐Bn) ここで|β|<M、|An|<Mとすると |αβ‐AnBn|≦M(|α‐An|+|β‐Bn|)となるらしいんですがよくわかりません 数学があまり得意ではないのでわかりやすくお願いします。 lim an+bn = lim an+lim bn n→∞ (1) lim an + bn = lim an +lim bn (2) 定数 c ∈R に対して, lim c an = c lim an (3) lim anbn = lim an lim bn, 証明を教えてほしいです lim[n→∞]an/bn=a/bの証明法を教えてください。(εーN) 極限の最初の所で行き詰って困っています。 lim[n→∞]an=a,lim[n→∞]bn=bの時 lim[n→∞]an/bn=a/bの証明についてです。 証明 (lim[n→∞]an・bn=abを証明済みという前提で)・・・※ ※より、lim(1/bn)=1/bを証明すれば十分。 |1/bnー1/b|=|bnーb|/(|bn||b|) b≠0だから∃N´;|bn|≧|b|/2 (n≧N´)・・・※※ また、∀ε>0,∃N;|bnーb|<ε (n≧N) よって |1/bnー1/b|=|bnーb|/(|bn||b|)<2ε/|b|^2 (n≧max(N,N´)) 分からないのは※※の部分 |bn|≧|b|/2の式で、この式がどこから出てきたのかが分かりません。 分かる方、よろしくお願いします。 至急、集合と写像 至急、集合と写像 明日テストなのですが、教科書に解説が乗っていない問題のため質問させて下さい。 【1】 各n∈Nに対してEn⊂En+1であれば lim(n→∞)En=∪(n=1,∞)En 各n∈Nに対してEn⊃En+1であれば lim(n→∞)En=∩(n=1,∞)En が成り立つことを示せ。 【2】 lim(n→∞)An, lim(n→∞)Bn がともに存在すれば次の等式が成り立つことを示せ。 (1) lim(n→∞)(An∪Bn)=lim(n→∞)An∪lim(n→∞)Bn (2) lim(n→∞)(An∩Bn)=lim(n→∞)An∩lim(n→∞)Bn 【3】 A,Bを集合とし、各k∈Nに対してE2k=A, E2k-1=Bとおく。次式が成り立つことを示せ。 lim(n→∞)supEn=A∪B lim(n→∞)infEn=A∩B 自分なりに色々考えたのですが、解答がないためとても困っています。 どうか宜しくお願いします。 証明問題が得意な方おねがいします。 次の定理をεーn式定義に従って証明。 2つの数列{An}、{Bn}について、 lim An=a、 lim Bn=b n→∞ n→∞ ならば lim(An±Bn)=a±b (復号同順) 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 極限 下の推論はどこか間違っているでしょうか? An=[0,n/(n+1)] (閉区間) B=[0,1) (半開区間) とする。 このとき An⊂B(n=1,2,3,・・・・) ところが、Lim[n→∞]An=Aとすると A=[0,1]だから A⊃BかつA≠B よって、次の命題 「An⊂B(n=1,2,3,・・・・) ならば Lim[n→∞]An⊆B」 は偽である。 証明問題が得意な方おねがいします。 次の定理をεーn式定義に従って証明。 2つの数列{An}、{Bn}について、 lim An=a、 lim Bn=b n→∞ n→∞ ならば lim(An±Bn)=a±b (復号同順) なるべく簡単にお願いします。 コーシー列 Q(有理数全体の集合)の2つのコーシー列{an},{bn}について、 (1){an+bn}はQの中のコーシー列であることを証明せよ。 (2){an-bn}はQの中のコーシー列であることを証明せよ。 この問題の解き方がわかりません。 『{an-bn}がコーシー列』⇔m>n,lim[n→∞]{(am-bm)-(an-bn)}=0 ⇔m>n,lim[n→∞]{(am-an)-(bm-bn)}=0 m>n,lim[n→∞](am-an)、lim[n→∞](bm-bn)は共に収束するので、 limの分配ができて 以下、続きを教えてください。 極限の問題です! [An(nは自然数)をAn>0である数列であるとして、lim(n→∞)A(n+1)/An=Lのとき、(1)L<1ならAnは収束しlim(n→∞)An=0,(2)L>1ならlim(n→∞)An=∞]であることを使って、 ( )n/2^n ( )n/b^n (bは0でない) の極限を求めたいのですがわかりません(泣)アドバイスお願いします。 はさみうちの原理(証明) 数列An<Xn<BnまたはAn≦Xn≦Bnでlim(n→∞)An=lim(n→∞)Bn=lが存在すれば、lim(n→∞)Xnも存在してlに等しいことを証明せよ。という「はさみうちの原理」を証明する問題ですが、どうすれば証明できるでしょうか?よろしくお願いします。 極限の問題なのですが、、、教えてください!! 各項が正である数列{an}、{bn}に対し、隣り合う2辺の長さがan,bnである長方形 の面積をSn、周の長さをLnとする。(n=1,2,3、、、) (1){an}が初項1、公比1/2の等比数列、{bn}が初項1、公比1/3の等比数列 であるとき∑(上が∞、下がn=1)Sn 、∑(上が∞、下がn=1)Lnを求めよ。 (2)an=1/√(n+1)+√n 、bn=√(n+1)+√n/n(n+1) (n=1,2,3、、、、) のとき、∑(上が∞、下がn=1)Sn、∑(上が∞、下がn=1)Lnの 収束、発散を調べ、収束するときはその和を求めよ。 (2)が特に分かりません、、、、。 詳しい解説をよろしくお願いします!! 大小関係はありますか ai,bi(1,2,…,n),nは自然数で、ai>biのとき (b1+b2+…+bn)/(a1+a2+…+an)と(b1/a1+b2/a2+…+bn/an)/nとの大小がありますか。あるいは、何らかの条件を付けると大小が決まりますか。 教えて頂ければと思います。 誰か教えてください・・・。 木曜日までの宿題なんですけど誰か教えてください・・・。 注:以下のan+1,bn+1 などはn+1番目のa,bという意味です。わかりにくくてすいません。 0>a1>b1 , an+1=√(anbn) , bn+1=(an+bn)/2 (n=1,2,3,・・・) で与えられている数列{an},{bn}について、次を証明せよ。 (1) {an}は増加関数、{bn}は減少関数である。 (2) lim(n→∞)an=lim(n→∞)bn もう1問いいですか。 回転楕円形x^2+y^2+(z^2)/4=1の表面上で、f(x,y,z)=x+y+z を最大化するような座標を求めなさい。 むずかしいっすよね・・ 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ありがとうございます。 >lim[n→∞]an≦lim[n→∞]bn なら an≦bn(n=1,2,3,…) はいえますか? と言えば良かったですね。 分かりました。