ベストアンサー 数学の問題 2014/08/18 19:44 すいませんlimでx→∞とした場合sinx/xの値は収束するでしょうか? またその場合のその値に収束する詳細を教えていただきたいです。 よろしくお願いします。 みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー akinomyoga ベストアンサー率85% (100/117) 2014/08/18 20:12 回答No.1 |sinx|≦1, |sinx/x|≦|1/x| →0 (x→∞), 「挟み撃ちの原理」で sinx/x→0 (x→∞) です。 (∵ for x>0, -1/x≦sinx/x≦1/x 左辺・右辺ともに lim で 0 に行きます) 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 数学の極限値の問題を解いてほしいです。 数学の極限値の問題を解いてほしいです。 以下の問題です。 lim {(sinx-x)/(sinx)^3} 収束(x→0) lim x^x 収束(x→+0) lim (sinx)/x 収束(x→0) lim {(sinx)/x}^{1/(x^2)} 収束(x→0) lim √(x+2)-√(x) 収束(x→∞) lim (x-sinx)/(x^3) 収束(x→0) lim (e^x-e^4)/(x-4) 収束(x→4) できれば解く過程もよろしくお願いします。 全部とは言いません。できるものだけでも構いませんので、よろしくお願いします。 数学の問題です。 lim[x→0]x‐sinx/x^3 ∫[-∞、∞]1/(1+x^2)dx の2問です。よろしくお願いします。 数学の問題についての質問です レポートの課題が出ているのですが、この問題がわかりません。 ) ・lim[x→0] {(1+x)^(-1/2)-(1-ax)}/x^2が収束するようにaの値を定め、極限を求めよ。 答えのみでなく、解答の過程もよろしくお願いします<(_ _)> 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 数学の問題 limでx→∞としたときsinxは振動するため極限はなしでしょうか? またlimでx→∞としたときf(x)-x=πとなるf(x)は何があるでしょうか? 回答のほどよろしくお願いします。 三角関数の極限の問題で・・・ 三角関数の極限の問題なのですが lim x→0 cosx/2 という問題で lim x→0 cosx=1 から lim x→0 cosx/2= 1/2 というのはわかるのですが 答えを見ると 1/2と、0以外の値に収束するとあります。 これの意味がわかりません・・・ 1/2に収束するのと、0以外の値に収束するという意味でしょうか これをグラフ化するとどんなグラフになるのでしょう・・・ 数学の極限の範囲です 1.a>1のとき極限lim(x→π)sinax/sinxが正の値に収束するためのaの条件を求めよ。 2.1の条件を満たすaに対して極限lim(θ→+0) sin{a(1-θ)π/θをaを用いて表せ。 3.1の条件を満たすaに対して、f(θ)=sin{(a-1)(1-θ)π}+2sin{a(1-θ)π}+sin{(a+1)(1-θ)π}とする。 このとき極限lim(θ→0)f(θ)/θ^3をaを用いて表せ。 解 1.aが3以上の奇数 2.aπ 3.aπ^3 どうしたらいいか分かりません お願いします。 数学問題の解説 次の問題の解説をお願いします。 微分の定義式d/dx f(x)=lim[y→0]{f(x+y)-f(x)}/yを用いて、以下の関数の導関数を求めよ。 但しlim[x→0]sinx/x=1は証明なしに利用してよいものとする。 1)sinx 2)cosx 3)x^m 文系にも理解できるくらいに詳しくして頂けますと非常に助かります。 数学の問題です 問1 lim[x→1] {(x^4)+(2x^3)-3}/(x-1) 問2 lim[x→0] {√(x+4) -2}/x 問3 関数f(x)の等式f(x)=sinx∫π,0(πから0)f(t)dtの時、f(x) =? 問4 曲線y=x(x-3)^2とx軸で囲まれた面積は? 数学の極限の問題についての質問です。 lim(3x-1)sin{log(x-2)-logx}(x→∞)の解き方がわかりません。答えが-6であることはわかっているんですが…。 途中式を教えていただけると幸いです。 ちなみに、lim sinx/x(x→0)=1を利用するのは確実みたいです。 極限の問題 次の極限を求めよ。 lim[x→0](sinx^0)/(x^0)=?? lim[x→0](sinx)/(x)=1 を使用すると思うのですが、どのようにしたらよいのでしょうか? x^0=1 sinx^0=π/2 ですよね? 0^0=? ゼロのゼロ乗っていったいどうなるのでしょうか? どなたか教えてください。 sinx/x グラフ f(x)=sinx/xのグラフを書くとx=0は定義できない様なのですがこれはなぜでしょうか? lim[x→0]sinx/x=1は理解できます。 xを限りなく0に近づけた場合sinx/xは1に収束します。 では、なぜsinx/xはx=0で定義できないのでしょうか。 x=0とxを限りなく0に近づけると言う事は同じではないのですか? 以上ご回答よろしく御願い致します。 数学IIIの問題 極限の問題です。助けてください 解説もお願いします 次の数列の極限値を教えてください。 (1)lim x→4 (x^2-16)/(x^2-4x) (2)lim θ→0 (sinθ)/θ 次の数列の極限を教えてください。 (1)lim x→2 1/(x-2)^2 (2)lim x→0 sinx 次の2次曲線を教えてください。 定点F (0,2)と定直線 l : y=-2があるとき、Fからの距離と l からの距離と等しい点Pの軌跡 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 高校数学の極限について 指数対数の極限で、知りたいものがあります。 高校数学の範囲で導けるかどうか、導けるなら結論を知りたいです。 三角関数における、lim[x->0]sinx/x = 0のようなものの事です。 知りたいのは、 lim[x->∞](x^n)/logx lim[x->∞](e^x)/(x^n) の値です。 nは整数です。 よろしくお願いします。 極限を求める問題です lim[x→0] (e^x*sinx - x)/x^2 という問題なのですが lim[x→0] (e^x*sinx - x)/x^2 =lim[x→0] e^x/x * (sinx)/x - x/x^2 =lim[x→0] e^x/x * (sinx)/x - 1/x = 0*1-0 =0 のように分解して,極値を求める解法を使ってもよろしいのでしょうか。 もし駄目でしたら、この問題の解き方をご教授お願いします 極限値の問題です! 次の極限です! lim(1-cosx)/x (x→0) 値はわかっているので、証明をお願い致します。 私も作りましたが、普通は、sinxの極限にしますよね。 できれば、そうでない方法でお願い致します。 いろいろな方がsinxを使わないで、何種類ぐらいできるか興味があるのです。よろしくお願い致します。 関数の極限の問題です。 極限の問題を考えています。 fを実数値連続関数とする。 lim[x→∞](f(x+2)-f(x))=3ならば、lim[x→∞]f(x)/xが収束することを示して、 さらに値をもとめよ。 よろしくお願いします。 この問題を解いてください 次の関数の極限値を求めなさい。 1.lim(x→0)(1-cosx)/x^2 2.lim(x→0)arctanx/x 3.lim(x→π)sinx/(π-x) 4.lim(x→0) (sinx-tanx)/x^3 5.lim(x→0){e^x+e^(-x)-2}/x^2 6.lim(y→0)(1+a/y^2)^y 7.lim(n→0)n{a^(1/n)-1} (a>1) nは整数 よろしくお願いします! 収束に関する問題 cを正の実数として、「lim【n→∞】(c^n)/n!=0が成り立つことを前提条件とする ならば、lim【n→∞】(c/n!)*x^n=0も成り立つ」ということを証明するにはどう したらいいでしょうか? cは固定された値だから収束に関係ないと思うんですけど、xはn乗されてるので、n →∞ならばx^nはxの値によって発散したり収束したり振動したりと、いろいろ変 化するから、この前提条件だけで lim【n→∞】(c/n!)*x^n=0を証明するのは不可 能でしょうか? ロピタルを使う問題 {L(4n)-L(2n)}/{L(2n)-L(n)}が1/4に収束することの証明。 L(n)=nsin(π/n)を用いること。 1/2cos(π/4n){1+cos(π/4n)} となるまでは解けたのですが lim[x→0](sinx/x)=1を使わないといけないらしく、これを使うまでの過程が分かりません。 よろしくお願いします。 数学の問題です 以下の2題の解き方を教えてください。 (1)lim x→1 x-1分のa√x+1-b=√2 のaとbの値を求める問題です ちなみに√のところはわかりにくいのですが 最初の√はx+1までがくくられています。 もう一題はlim x→-2{1-(x+2)2乗分の1}を求めよです お願いします 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など