ベストアンサー 回転と曲面について 2014/07/31 23:35 式x=√yで定義されるxy平面の曲線を空間の中でy軸に関して回転させて得られる曲面は「楕円面」「楕円方物面」「1葉双曲面」「2葉双曲面」「この中にはない」のどれになるでしょうか。 よろしくお願いします。 みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー info222_ ベストアンサー率61% (1053/1707) 2014/08/01 01:47 回答No.1 回転放物面です。 水平切断面が円である楕円放物面の特別なケースです。 楕円放物面は水平切断面が楕円です。 「この中にはない」です。 参考URL ttp://kotobank.jp/word/回転放物面 参考URL: http://kotobank.jp/word/回転放物面 質問者 お礼 2014/08/01 05:09 ありがとうございました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 大学の数学「空間ベクトル」の問題がわかりません (問題)式x^2-y^2=1 (^2は二乗のこと)で定義されるxy平面の曲線を空間の中でy軸に関して回転させて得られる曲面は何か。 (答)一葉の双曲面 なのですが、考え方がわかりません。解説をお願いします。 曲面 2点(1,0,0),(-1,0,0)からの距離の差の絶対値が2hである点(x,y,z) たちの作る曲面を求めよ。 やってみました。 xy平面で考えると、(1,0)(-1,0)からの距離の差の絶対値が2hである点の軌跡は双曲線である。ゆえに求める曲面はxy平面の双曲線をx軸まわりに回転させた2葉双曲面である。 xy平面の双曲線はx^2/h^2-y^2/(1-h^2)=1であらわせる。(計算済み) ゆえに求める方程式は -x^2/h^2+y^2/(h^2-1)-z^2/(h^2-1)=-1 としたのですが、どうでしょう? 2次曲面 (1)2点(1,0,0),(-1,0,0)からの距離の和が2Hである点(x,y,z)たちの作る 曲面を求めよ。 (2)2点(1,0,0),(-1,0,0)からの距離の差が2hである点(x,y,z)たちの作る 曲面を求めよ。 (1)は、楕円面になると分かりました。 よって、(x^2/H^2)+(y^2+z^2)/(H^2-1)=1 になりました。 (2)なのですが、双曲面になると思うのですが どのような双曲面になるかが分からないです。 どのように考えると良いのでしょうか? よろしくお願い致します。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 空間内の2点の線分がつくる回転体の曲面に関する2問 もともと立体に弱いのか、次の問題の曲面などが、どうもうまく描くことができません。それで、解き始めからつまづいている有様です。解説してもらうのに図示できませんから、座標や式から逆に図式化しながら、自分で納得したいと思っています。面倒な問題になりますが、よろしくお願いします。 空間内の2点A(-2, 2, 1),B(2, t, 2)を通る直線ABをx軸のまわりに1回転してできる曲面をS(t)とするとき、次の問いに答えよ。 (1) tの値を適当に決めると、曲面S(t)とxy-平面との交線はy軸について対称となる。そのようなtの値をすべて求めよ。また、それらのtの値に対する交線の式を求めよ。 (2) 曲面S(t)と2平面x=-4, x=4とが囲む立体をV(t)とする。(1)で求めたtの値に対する立体V(t)の共通部分をVとするとき、Vの体積を求めよ。 回転体についてお願いします。東大実戦模試からです。 xy平面上の楕円E:2x^2+y^2=1,z=0を、中心がyz平面上の円弧C:y^2+z^2=1,y≧0,z≧0,x=0上にあるように平行移動したもの全体がつくる曲面をFとする。さらに、曲面Fをz軸の周りに回転するときFが通過する部分をKとする。 0≦t≦1を満たす実数tに対して、平面z=tによるKの切り口の面積をS(t)とおく。 t=sinθのとき、S(t)をθで表せ。ただし、0≦θ≦π/2 とする。 という問題なのですが、解説に、 z=sinθによるKの切り口は、楕円Eを、その中心が(0,cosθ,sinθ)にくるように平行移動して、それをz軸の周りに回転したものであるから、切り口は2つの同心円で囲まれた図形となる。 とあるのですが、回転軸は楕円の内部にあるのに、なぜ内径も考えないといけないのでしょうか。 よろしくお願いします。 *東大入試実践2006年度の問題です。 曲面の表面積を求めるには 曲線y=sinxの 0≦x≦π/2 の部分をx軸のまわりに1回転して得られる曲面の表面積を求めるには? 公式はわかるのですが、積分がどうしてもできません。 球面上の螺旋計算方法 (未解決で再度ご質問します) 原点を中心とする半径rの球面 xy平面上にある(0、0)、(0、-r)の直線をz軸方向にz=r(球面のてっぺん)までα°回転させながら伸ばし曲面を描写 球面が曲面で分断される曲線をxy平面上に投影 yz平面上で見るθ=90-180°の範囲において定義される x及びyを求める式がわかる方、ご教授お願いいたします。 昨日もご質問に対して、ご回答を頂きましたが私の知恵不足で解決には至りませんでした。 工作機械のマクロプログラミングに際して計算方法の理解が必要になっています。 何卒宜しくお願いいたします。 曲面と点の距離 曲面と点の距離 二葉双曲面の片側(z>0)と点との距離の求め方を教えてください。 例 x^2+y^2-Z^2+1=0 (3/√2,3/√2,-√2) 3 次元空間中の曲面 媒介変数t を用いて(x(t) , y(t))と表されるxy 平面の曲線を, z 軸方向に平行移動してできるカーテン 状 の滑らかな曲面をS とする. 曲面S の2 つの接ベクトルpt(t, z) := ∂tp(t, z), pz(t, z) := ∂zp(t, z) を求めよ. わかりません。 詳しい解説お願いします。 曲面と平面 曲面x^2-y^2=4z、2平面x=±1、xy平面z=0によって囲まれた部分の重心を求めよという問題の解法を教えてください。 平面の回転 ある空間情報の平面(※1)に対して、 別の平面(※2)を回転させて※1の平面の位置に配置したいです。 平面が重なり合う状態。 ※1 (0,0,0) -> (1,1,1)の線を平面にしたもの ※2 (0,0,0) -> (1,1,0)の線を平面にしたもの どのように回転させればいいのでしょうか? z軸の回転やy軸での回転などいろいろ試しましたが、 うまくいかないです。 よろしくお願いします。 幾何学の問題です。よろしくお願いいたします(5) すみません。どうしても解けません。ご回答よろしくお願いいたします。 第1基本形式が(1+u²)(du)²+2uv du dv+(1+v²)(dv)²で与えられる曲面はどれか。 (1) 楕円形 (2) 1葉双曲面 (3) 2葉双曲面 (4) 楕円放物面 (5) 双曲放物面 ご教示のほどよろしくお願いいたします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 回転体の体積をバウムクーヘン法で求めたいのですが xy平面上のy=x^2-2xとこの曲線上の(2,0)における接線(y=2x-4)に囲まれる部分を、y軸の周りに1回転して出来る体積をバウムクーへん法で求めたいのですが、上手く求まりません。どなたか、お判りの方、おられましたら、宜しく、ご教示お願い致します。 立体図形 yz空間に3点A(1,0,0)、B(0,1,0)、C(0,0,1/√2)がある。 いま、x≧0、y≧0、z≧0の部分に曲面Dがあり、Dとxy平面、yz平面、zx平面との交線はそれぞれ線分AB,BC,CAである。 また、線分ABに垂直に交わる任意の平面πとDとの交線は、 π上にxy平面との交線上にX軸、zxまたはyz平面との交線上にY軸をとるXY平面を設定すると、 曲線XY=1(X>0,Y>0)を平行移動させたものの一部になる。 このとき、Dとxy平面、yz平面、zx平面で囲まれた部分の体積を求めよ。 設定が難しくて、イメージがつかめません。 解答をなくしてしまったようで、どなたか解説お願いします。 回転体の体積 aを0<a<1/4を満たす実数とする。xy平面で不等式 y^2≦x^2(1-x^2)-a の現す領域をy軸周り回転させた回転体の体積を求めよ。 図形の概形がまずわからないのですが、y軸対称、x軸対称、原点対称ぐらいしかわからないです。 まずどうやって概形を求めればいいのでしょうか?ヒントでお願いします。 y軸のまわり、さらにx軸のまわりの回転体の体積 上智・理工の過去問なのですが、なぜ、あえて軸を変えてまで回転させるのか、よくわかりません。最初のy軸のまわりに回転した回転体の体積の2倍で求められると思うのですが、誰か、解答していただけませんか。どうかよろしくお願いします。 <問題> xy平面上にあって曲線 y=2-2x^2 とx軸とで囲まれた図形をy軸のまわりに回転してできる回転体を、さらにx軸のまわりに回転してできる回転体の体積を求めよ。 回転する楕円の問題 (x^2/a^2)+(y^2/b^2)=1 (a, bは実数) で表される楕円を,原点Oを中心としてxy平面内で回転させる. 今,各辺がx 軸または y 軸に平行,かつ,この楕円に外接する長方形を考える.このとき, 長方形の面積Sの最大値と最小値を求めよ 問題です。 私の考えとしては、 まず (X) =(cosθ sinθ) (x) (Y) (-sinθ cosθ)(y) でx,yをX,Yで置き換え、回転する楕円の式に変える。 次に、式をXで微分して、dX/dYをだして、接線の方程式を求める。 最後に、x=0の接線とy=0の接線の積*4は長方形の面積Sでこれを微分するなり、 変形するなり、最大値と最小値を求める。 こういうふうにやってみましたが、式が複雑でかなりの時間をかかりました。 この問題の制限時間は10分なので、自分のやり方が間違っているか、もっと 簡単な方法があると思います。 ですので、どなた分かる方、ご教授お願いします。 ラグランジュの未定乗数法に関する記述について(陰関数) g(X,Y)=0の陰関数表示されたものは、今までXY平面でZ=0で表示される曲線だと思っていたんですが、本に「g(X,Y)=0は、XとYの陰関数で図形的にはZについて何の制約もないのでZ軸に平行な曲面を表す」とあり???つって感じです。 XY平面に平行でかつZ=0での曲線ではないんでしょうか? お詳しい方教えて下さい。宜しくお願いします。 回転してできる体積 x=a,x=b(a<b),x軸,y=f(x)で囲まれる図形をx軸で回転してできる体積Vは V=π∫(a→b){f(x)}^2 dx で与えられる。 それの応用として、 (問)y=x+2,y=x^2で囲まれる図形を、y=x+2で回転してできる体積を求めよ. という問題を考える。 注;ハート型の半分を回転させることに注意 軸が傾いていることと、半ハート型の回転により、分けて積分しなければいけないので、計算がいやらしい。 ところで、xy平面上に直線lがあり、lとある曲線で囲まれる閉領域Dがある. このとき、Dをlを軸に回転してできる体積Vは V=2π∬(D)d(P)dxdy で求めてみたところ、どうやら答えが同じになる。 ここでd(P)とは xy平面上の点P(x,y)に対して d(P):=直線lと点Pとの距離 これを使うと、この問題の計算が格段に楽になる。 ただ問題なのは、この公式は正しいのか?ということである。 だれか、この公式が正しい、または間違っていること分かる方、解答をお願いします。 (lがx軸に平行なときは一致することは自分で確かめてみました) 偏微分 曲面の問題 関数z=x^2+y^2で表される曲面を求めよ 以上の問題で、自分の解答は 以下の通りです 曲面とzx平面のx>=0の部分との交わりは Z=x^2 したがって、点H(0、0、z)を通り zx平面上の放物線z=x^2をz軸まわりに 回転してできる曲面(放物面) この解答は正しいのでしょうか? 教科書の例題をもとに解いたため 途中の解答に自信がありません ちなみに、自分の解答の下から2行は 教科書の解答(答えだけ)のため途中の やり方に間違いがあればご指摘願います 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ありがとうございました。