- 締切済み
「99.9%の確率で陽性」
ゆうべたまたまNHKの「ハードナッツ」というドラマを見ました。 ある刑事(高良健吾)が「99.9%の確率で」、ある病気(仮に「xdr5」)だと診断された。 xdr5陽性の人は1万人に1人。その1人は100%死ぬ。 「オレは99.9%の確率で死ぬ。再検査? 意味ねえだろ、99.9%だぜ」と、 健吾は絶望する。が、天才数学ガール(橋本愛)が言うのです。 「それ、計算間違ってますよ。再検査した方がいいですよ」 僕にはいまいち理解できなかったのですが、ええと、たぶん、 1)診断の精度が100%であれば、陽性判定が出るのは1万人に1人。 2)実際の検査の精度は99.9%なので、1万人検査すると陽性判定が10人出る。 3)その10人のうち、本当に陽性なのは1人だけ。 4)つまり、健吾さんが陽性である確率は99.9%ではなく、10%。 ・・・という感じ。この理屈は、正しいですか? 「精度100%なら1万人に1人。実際は99.9%なので、1万人あたり10人」 というのは、式にすると「1万 × 0.001 ×1= 10」でしょうか。 だとすると、以下の理屈も正しいのでしょうか。 ----------------------------------------------------------------- 人類の10人に1人が「cft6」という病に罹っています。 波平は、99.9%の確率でcft6だと診断されました。 診断の精度が100%であれば、陽性判定が出るのは1万人あたり1000人のはずです。 実際の検査の精度は99.9%なので、1万人検査すると陽性判定が1万人出ます。 つまり全員。つまりこの検査は全く無意味。 ----------------------------------------------------------------- 99.9%もの精度の検査が「全く無意味」というのは、 直観的には納得しにくいのですが。
- みんなの回答 (11)
- 専門家の回答
お礼
回答ありがとうございます。たしかに言葉の定義が曖昧過ぎました。 とりあえず「陽性の人は100%発症する」という前提でお願いします。