ベストアンサー 質問です 2014/06/11 21:37 3点(0,-2),(1,-1),(2,2)を通る二次関数のグラフを描き、これをx軸方向に-1.y軸方向に3だけ平行移動した。このときの二次関数の式はどうなるか。 回答解説お願いします みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー asuncion ベストアンサー率33% (2127/6290) 2014/06/11 21:43 回答No.1 y = a^x + bx + c この放物線が3点(0, -2), (1, -1), (2, 2)を通るから、 -2 = c ... (1) -1 = a + b + c ... (2) 2 = 4a + 2b + c ... (3) (1)を(2), (3)に代入する。 a + b = 1 ... (4) 4a + 2b = 4 ... (5) (5)-2×(4)より、 2a = 2, a = 1 (4)に代入して、b = 0 よって、平行移動する前の放物線の式は y = x^2 - 2 これをx軸方向に-1, y軸方向に3だけ平行移動すると、 y - 3 = (x + 1)^2 - 2 より、 y = x^2 + 2x + 2 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (1) asuncion ベストアンサー率33% (2127/6290) 2014/06/11 21:49 回答No.2 おっと… >y = a^x + bx + c これは間違い。 当然 y = ax^2 + bx + c です。 以降の議論には関係ありません。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A ☆数学の問題(平行移動)☆ (1) y= - 4x + 2 のグラフをx軸方向に-3、y軸方向に(?)平行移動させると y= - 4x + 8という関数のグラフが得られる。 (2)y= 4x + (?)のグラフをx軸方向に3、y軸方向に- 2平行移動させると、 y= 4x - 6という関数のグラフが得られる。 (3) y= 2xx - 4 のグラフをx軸方向に(?)、y軸方向に(?)平行移動させると y= 2xx + 8x + 7という関数のグラフが得られる。 (4) y= xx + bx + 1 のグラフをx軸方向に2、y軸方向にdだけ平行移動させると y= xx + x + 2というう関数のグラフが得られる。このとき b=(?)で、d = (?)である。 グラフの平行移動がいまいち理解できなくて・・・ (3)などの「xx」は「xの2乗」を表しています! 解説など付けて頂けると助かります(*´▽`)*´▽`)*´▽`)ノ 数Iの質問です。 二次関数 y=2x²+12x+5 のグラフをx軸方向に〇〇、y軸方向に□□だけ平行移動したグラフは、二点 (-1,0)、(5,24)を通り、その頂点の座標は●●である。 このやり方を教えて下さい。 答えは、 〇〇=4 □□=5 ●●=(1、-8) 数学I 2次関数とそのグラフについて 数学Iを独学で勉強しております。 2次関数について躓いてしまい、理解できない箇所があります。 2次関数 (1)y=3(X-4)^2 と (2)y=3(X+4)^2のグラフはy=3X^2をどのように平行移動した物か。 (1)は、X軸方向に4だけ平行移動したもの (2)は、X軸方向に-4だけ平行移動したものが答えになるとあったのですが、 (1)はどうして、-4なのにプラスの方向へ移動するのですか? (2)の解説に、y=3(X+4)^2=3{x-(-4)}^2と変形できるので、(2)は、X軸方向に-4だけ平行移動したものである。とあったのですが、どうして式を変形しなけばならないのでしょうか。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム y=a(x-p)自乗+q 放物線Y=2X自乗をX軸に+3、Y軸に+1 したときの関数のグラフについて 平行移動の結果できたグラフのある点(x.y)を満たす方程式を求める ↑満たすってどういうことですか? 平行移動前の(x.y)は(x-3.y-1)よってこれをY=2X自乗に代入すると平行移動後の関数の式がでる ↑なぜですか?ある程度馬鹿でもわかるように解説して下さると助かります 数学の二つ質問があります。大至急です 一つ目 平行移動の質問です y=x^2をx軸方向にp、y軸方向にq平行移動する。 このときのグラフの方程式を求めたいです。 y=x^2上の点を(X,Y)とおくと移動後の点を(α、β)とおくと α=X+p β=Y+q Y=X^2 なので β-q=(αーp)^2 よって y-q=(x-p)^2 となるとは思ったのですが疑問があります 最後のY=X^2までは原点が頂点の二次関数のグラフのはずなのですが、 最後にY,Xに代入しただけでグラフが変わるのっておかしくないですか? 移動後も移動前も考えている軸はx-y軸のはずで、X-Y軸ではないと思うのですが。 Y=β-q なのでβ-qとYは等しいはずです。 なのにどうして代入した後はグラフが違うのでしょうか? またどうして代入した後のグラフは平行移動した後のグラフというのがわかるのでしょうか? 三次関数、四次関数の概形について なぜ3次関数、4次関数はあのような形をしているのですか? 1次関数、2次関数は式からグラフの形を想像できるのですが、3次関数や4次関数はそれが出来ません。 yの値が増加から減少(減少から増加)に変わるのはxの値がどういうときなのですか? それともうひとつ疑問があります。 y=(x-a)^n のグラフはy=x^n のグラフをx軸方向にaだけ平行移動したものである。 という文章をよく見るのですが、理屈がよくわかりません。 どうしてそうなるのか教えてください。 y軸方向に平行移動、の理屈は理解できるのですが、x軸方向に平行移動といわれるとイメージが湧きません……。 よろしくお願いします。 グラフの平行移動の説明 高校数学からの質問です。 y=xのグラフにおいて、x軸正方向にpだけ平行移動すると、y=x-pとなり、y軸正方向にpだけ平行移動するとy=x+pになります。一次関数に限らず二次関数でも、平行移動において、x軸方向だと-p、y軸方向だと+pという操作をすると思います。 しかし、グラフを見てわかっても、なぜ平行移動において、x軸方向だと-p、y軸方向だと+pになるのか理屈がわかりません。 宜しくお願いします。 関数y=sinxのグラフに関して? 関数y=SinXのグラフを、y軸に関して対称移動し、さらにX方向に-π/2平行移動させる式はどうなりますか。 数学の問題で分からないのがあります。 (1)グラフが次の条件を満たすような2次関数を求めてください。(途中式もお願いします。) ・3点(-1,-8), (2,7),(5,4)を通る。 (2)グラフが次の条件を満たすような2次関数を求めてください。(途中式もお願いします。) ・軸の方程式がx=-1で、2点(-4, -7), (1, 3)を通る。 (3)放物線y=ax^2+bx+cをx軸方向に2, y軸方向に3だけ平行移動し、さらに、原点に関して対称移動すると放物線y=2x^2+8x+5になった。定数a,b,cの値を求めてください。(途中式もお願いします。) 数I・2次関数の問題について質問です。 数I・2次関数の問題について質問です。 ≪問題≫ 2次関数y=ax^2+bx-6のグラフを原点に関して対称移動し、 さらにx軸方向に-1、y軸方向にpだけ平行移動すると、 グラフは点(-2.0)でx軸に接し、点(1.-18)を通る。 このとき定数a.b.pの値を求めよ。 …という問題で、解答が ≪解答≫ 移動後のグラフを表す2次関数は、【対称移動によってx^2の係数の符号が逆になり】、 かつ点(-2.0)でx軸に接することから、頂点は(-2.0)なので、 y=-a(x+2)^2とおくことが出来る。 (あとは、x軸方向とy軸方向への平行移動、原点に関しての対称移動を戻して…と解答が続きます。) ≪質問≫ 上記の解答で、【対称移動によってx^2の係数の符号が逆になり】という部分が理解できません。 後に、移動後のグラフを移動前に戻す作業があるので、 ここでの【対称移動によって~】が何の事を指しているのかわかりません。 【~x^2の係数の符号が逆になり】なのでx軸に関しての対称移動なのか? という事は考えてみたのですが…。(だとしても、何故ここで対称移動するのかが謎。) 長くなってしまい申し訳ありません。 わかる方いらっしゃいましたら教えてください。よろしくお願いいたします。 分数関数 関数y=2/x-1のグラフをx軸方向に3、y軸方向に2だけ平行移動したグラフを表す関数を求めよ。 答えはy=2/x-4 +2であってます?答えが配られていないので・・・ 数学 2次関数 y=x^2+x+aのグラフをx軸の正方向へ1、y軸の正方向へ2だけ平行移動したグラフが点(2,-5)を通るとき定数の値を求めよ。 解答・解説お願いします(>_<) 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 高校1年 数学Iの問題について 数学Iが赤点になりそうです;; 何方か教えてください>< 1. 二次関数 y=3x^2+6x-1 のグラフを平行移動して二次関数 y=3x^2-12x+5 のグラフに重ねるにはどのように平行移動すればよいか 2. 二次関数 y=-2x^2+5x-3 のグラフを、x軸方向に-2、y軸方向に4だけ平行移動した放物線の方程式を求めよ 3. 二次関数 y=-x^2+6x+2k のグラフが、x軸と2点で交わるとき、定数kの値の範囲を求めよ 4. 二次関数 y=1/2x^2-kx+k+4のグラフがx軸と接するとき、定数kの値を求めよ 5. 二次関数 y=x^2-2mx+2m+3 のグラフが、x軸と異なる2店で交わる時、定数mの値の範囲を求めよ 6. 二次不等式 2x^2-2(a-1)x+a+3>0 の解がすべての実数であるとき、定数aの値の範囲を求めよ 7. △ABCにおいて、a=4、b=8、c=60°のとき、A、Bの値を求めよ よろしくお願いします>< 2次関数なんですが・・・ すみません。追加で教えてください。 y=(x-1)^2 (b=1 c=2)2次関数の式をx軸方向にb、y軸方向にc平行移動するとどういう式になるかという問題の場合、どのように求めるのでしょうか。グラフはかけたのですが、導き方がわかりません。 対数関数を平行移動すると・・・ 関数y=log[2]x・・・(1)のグラフをx軸の負の方向に2,y軸の正の方向に1だけ平行移動すると関数y=log[2](2x+4)になると思うのですが、このグラフは真数条件を満たしていると言えるのでしょうか?このグラフのyが-1のときxは-7/4になるのですが、これは(1)のx>0の真数条件を満たしていないですよね?そもそも、平行移動なんてしても良いのですか?グラフが下に行くとy軸を越えて負になってしまいますよね。すみません、ちょっと混乱してきました。だれかすっきりさせてください。お願いします。 数1 2次方程式の解答をお願いします H23.04 下記が問題文です。【1】~【5】が問題箇所です。 出来れば問題の解答の解説も付けて頂けると嬉しいです。 2次関数 y=2x^2-8x+7 …(1) y=-(X+m)^2+n (ただし、m、nは実数) …(2) がある。 (1) (1)のグラフの頂点と、(2)のグラフの頂点が一致するとき、m=【1】である。 (2) (1)で y=1 となるときの x の値は【2】である。 また、(2)でも y=1 となるときの x の値が【2】と一致するとき、(2)のグラフの頂点の座標は、【3】である。 (3) (1)のグラフを x 軸方向に a、y 軸方向に 4a だけ平行移動するとき、 y 軸と点(0、-11) で交わるならば、a=【4】である。 このとき、移動したグラフを表す2次関数の最小値は【5】である。 数学の問題の答えをお願いします 数学の問題の解答と途上式をお願いします。 次の2次関数をy=a(x-p)^2+qの形に変形しなさい。 (1)y=-x^2-2x-1 次の関数のグラフを()内に示したように平行移動したとき、そのグラフをあらわす2次関数を求めなさい (1)y=-x^2 (x軸方向に2) (2)y=x^2 (y軸方向に5) □を埋めてください。 (1)y=2x^2-4 (y=2x^2) x軸方向に□ y軸方向に□ 頂点の座標(□、□) 軸の方程式□ 二次関数の問題を教えてください! (1)放物線y=a^2+ax+aを原点に関して対象移動し、さらに、x軸の正の方向に1、 y軸の正の方向にbだけ平行移動したところ、この放物線は点(2,0)でx軸に接した。定数a,bの値を求めよ。 (2)放物線y=x^2-2(2a-1)x+4a^2-a+3の頂点が直線y=4x-3上にあるとき、aの値を求めよ。 (3)二次関数y=x^2+2x+3のグラフをx軸方向にp,y軸方向にqだけ平行移動し、点(1,1)を通るようにする。q=-1として pの値を求めよ。 を教えてください!! こうやるのかなぁというのはわかるのですが、なかなかうまくいかず、時間をたくさんかけてしまいました。 途中式も含め回答宜しくお願いします! 二次関数 座標平面上でx軸方向に-2、y軸方向に2平行移動すると、y=3x^2-7+3のグラフに重なる放物線の式を求めろ。 回答をお願いします。 3xの2乗ですわかりにくくてすみません 数1 二次関数 回答を見てもよく理解できないので、教えて下さい。 2次関数y=-3x^2+x-2のグラフを、x軸方向に4、y軸方向に5平行移動した時の放物線の方程式を求めよ。 回答:Y=-3x^2+25x-49 解説:Y=-3(x-4)^2+(x-4)-2+5 =-3x^2+25x-49 ちなみに、私は Y=-3x^2+x-2を、Y=a(x-p)^2+qの形にして、それからx軸方向に4の部分を(x-p-4)、y軸方向に5の部分をq+5にしようと思い、解いてみましたが、数は合わないし、回答は全く違った解説がしてあるので、さっぱり分かりません。 きっと初歩的なところで引っかかっているのかと思いますが、どうぞよろしくお願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など